

Национальный исследовательский ядерный университет «МИФИ»

Кафедра физики элементарных частиц №40

Выпускная квалификационная работа студента на тему:

ИССЛЕДОВАНИЕ РОЖДЕНИЯ ЛЕГКИХ ВЕКТОРНЫХ МЕЗОНОВ В УЛЬТРАПЕРИФЕРИЧЕСКИХ СТОЛКНОВЕНИЯХ ТЯЖЕЛЫХ ИОНОВ

Научный руководитель: Тимошенко С.Л.

Работа студента 4-ого курса Захарова Арсения Михайловича ИЯФиТ

Цель работы

- Изучение рождения легких векторных мезонов в ультрапериферических столкновениях тяжелых ионов;
- Моделирование канала распада векторного мезона ϕ в условиях эксперимента ATLAS на два нейтральных каона $\phi \rightarrow K^0_{\ L} K^0_{\ S}$ с последующим распадом на противоположно заряженные пионы $K^0_{\ S} \rightarrow \pi^+ \pi^-$;
- Полное моделирование полученных данных в условиях эксперимента ATLAS;
- Сравнение с независимым MC генератором и экспериментальными данными, полученными при столкновениях релятивистских ядер свинца при энергии $\sqrt{s} = 5,02$ TeV/нуклон на БАК в эксперименте ATLAS.

Введение

Классификация реакций при релятивистских столкновениях тяжелых ионов:

- центральные (b ~ 0 или b < R);
- периферические (b ~ R);
- ультрапериферические (b > 2R).

При ультрапериферических столкновениях происходят:

- когерентные фотон-фотонные (ү ү) взаимодействия;
- фотон-померонные (ү Р) взаимодействия;
- померон-померонные (Р Р) взаимодействия.

При ультрапериферических взаимодействиях возможно образование лептоных пар, векторных мезонов, струй и т.д.

Ультрапериферическое взаимодействие

Монте-Карло генераторы

• В настоящее время для моделирования столкновений частиц с частицами, частиц с ядрами и ядер с ядрами максимально близкого к действительности разработано большое количество программ, основанных на Монте-Карло методе случайных испытаний.

Для моделирования событий на ATLAS используются генераторы:

- генераторы РҮТНІА, включая его версию РҮТНІАВ;
- HERWIG;
- Sherpa;
- STARLight и многие другие.

STARLight - Монте-Карло генератор, моделирующий двухфотонное и фотонпомеронное взаимодействие между релятивистскими ядрами и протонами.

Программа была разработана для изучения образования частиц в ультрапериферических взаимодействиях при энергиях RHIC в эксперименте STAR.

С развитием физики тяжелых ионов и открытием более масштабных проектов, программный пакет STARLight был расширен до энергий, используемых на БАК.

STARLight

Two-Photon Channels

Particle	Jetset ID
e⁺e⁻ pair	11
µ⁺µ⁻ pair	13
τ⁺τ⁻ pair	15
τ ⁺ τ⁻ pair, polarized decay	10015*
ρ ⁰ pair	33
a ₂ (1320) decayed by PYTHIA	115
η decayed by PYTHIA	221
f ₂ (1270) decayed by PYTHIA	225
η' decayed by PYTHIA	331
f ₂ (1525) → K ⁺ K ⁻ (50%),K ⁰ K ⁰ (50%)	335
η _c decayed by PYTHIA	441
f ₀ (980) decayed by PYTHIA	9010221

Particle	Jetset ID
$\rho^0 \rightarrow \pi^+\pi^-$	113
$\rho^0 \to \pi^+\pi^-$ and direct $\pi^+\pi^-$ production, including the interference.	913
$\omega \rightarrow \pi^+\pi^-$	223
$\phi \rightarrow K^+K^-$	333
$J/\Psi \rightarrow e^+e^-$	443011
$J/\Psi \rightarrow \mu^+\mu^-$	443013
$\Psi(2S) \rightarrow e^+e^-$	444011
$\Psi(2S) \rightarrow \mu^+ \mu^-$	444013
$Y(1S) \rightarrow e^+e^-$	553011
$Y(1S) \rightarrow \mu^+\mu^-$	553013
$Y(2S) \rightarrow e^+e^-$	554011
$Y(2S) \rightarrow \mu^+\mu^-$	554013
$Y(3S) \rightarrow e^+e^-$	555011
$Y(3S) \rightarrow \mu^+ \mu^-$	555013
$\rho' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	999

Vector Meson Channels

За основу моделирования $\varphi \longrightarrow K^0_S K^0_L$ был взят 333 канал

Результаты генерации событий с помощью STARLight

Распределение по инвариантной массе пары каонов

Параметры:

Среднее время жизни каонов Долгоживущий: t = (5.116±0.021) ×10⁻⁸ sec

Короткоживущий: $t = (8.954 \pm 0.004) \times 10^{-11}$ sec

Массы каонов: $M(K^0_L) = M(K^0_S) = 0.497614 \ GeV/c^2$

Масса ϕ -мезона : M(ϕ)= 1.019461 GeV/c²

Ширина ф-мезона : $\Gamma(\phi)=0.004266~GeV/c^2$

Branching ratio: PhiBrKLKS = 0.342

Распределение по поперечному импульсу пары каонов

Распределение по быстроте пары каонов

Полное моделирование

- Процесс полного моделирования можно разделить на несколько основных этапов:
 - Генерация событий

. . .

Выходной файл сгенерированных событий содержит в себе информацию о сгенерированных частицах. Для stand-alone версии STARLight сгенерированные данные имеют формат ASCII, и представляются в формате:

EVENT: n ntracks nvertices VERTEX: x y z t nv nproc nparent ndaughters TRACK: GPID px py py nev ntr stopv PDGPID

evgenConfig.description = "Starlight gamma + gamma UPC collisions at 5020 GeV to continuum -> 2 e, 3.6 GeV < m < 8 GeV, pT(e)>1.8GeV, |eta(e)|<2.6" evgenConfig.keywords = ["2photon","2lepton"] #evgenConfig.weighting = 0 evgenConfig.contact = ["mateusz.dyndal@cern.ch"] TODO: Sort out proper param setting based on runArgs.ecmEnergy int(runArgs.ecmEnergy) != 5020: evgenLog.error("This JO can currently only be run for a beam energy of 5020 GeV") sys.exit(1) include("Starlight_i/Starlight_Common.py") enSeq.Starlight.Initialize = \ ["beam1Z 82", "beam1A 208", #Z,A of projectile "beam2Z 82", "beam2A 208", #Z,A of target # TODO: Calculate this from runArgs.ecmEnergy "beam1Gamma 2705", #Gamma of the colliding ion1, for sqrt(nn)=5.02 TeV "beam2Gamma 2705", #Gamma of the colliding ion2, for sqrt(nn)=5.02 TeV "maxW 4", #Max value of w "minW 0.6", #Min value of w "nmbWBins 200", #Bins n w "maxRapidity 3["], #max y "nmbRapidityBins 200", #Bins n y
"accCutPt 0", #Cut in pT? 0 = (no, 1 = yes) "minPt 0", #Minimum pT in GeV "maxPt loo", #Maximum pT in GeV "accCutEta 0", #Cut in pseudorapidity? (0 = no, 1 = yes) "minEta -2.7", #Minimum pseudorapidity "maxEta 2.7", #Maximum pseudorapidity "productionMode 2", #(1=2-phot,2=vmeson(narrow),3=vmeson(wide)) "nmbEventsTot 1", #Number of events "prodParticleId 334", #Channel of interest "beamBreakupMode 5", #Controls the nuclear breakup "interferenceEnabled 0", #Interference (0 = off, 1 = on) "interferenceStrength 1.", #% of intefernce (0.0 - 0.1) "coherentProduction 1", #Coherent=1,Incoherent=0 "incoherentFactor 1.", #percentage of incoherence "maxPtInterference 0.24", #Maximum pt considered, when interference is turned on "nmbPtBinSInterference 120", #Number of pt bins when interference is turned on "xsecMethod 1", #Set to 0 to use old method for calculating gamma-gamma luminosity "nThreads 1", #Number of threads used for calculating luminosity (when using the new method) "pythFullRec´1" #Write full pythia information to output (vertex, parents, daughter etc)

Входной файл STARLight

EVENT: 1 2 1
VERTEX: 0 0 0 0 1 0 0 2
TRACK: 0 0.124297 0.0562912 -14.1068 1 0 0 310
TRACK: 10 -0.0649924 -0.033287 -18.2177 1 1 0 130
EVENT: 2 2 1
VERTEX: 0 0 0 0 1 0 0 2
TRACK: 10 0.00863557 0.0637147 11.5942 2 0 0 130
TRACK: 0 -0.102671 -0.0125661 8.55472 2 1 0 310
EVENT: 3 2 1
VERTEX: 0 0 0 0 1 0 0 2
TRACK: 0 0.0948404 0.0129457 -0.253868 3 0 0 310
TRACK: 10 -0.0993462 0.00168524 -0.232482 3 1 0 130
EVENT: 4 2 1
VERTEX: 0 0 0 0 1 0 0 2
TRACK: 0 0.00606019 -0.0517015 -3.02633 4 0 0 310
TRACK: 10 -0.0263082 0.0337192 -1.82674 4 1 0 130
EVENT: 5 2 1
VERTEX: 0 0 0 0 1 0 0 2
TRACK: 0 0.0350755 0.0909863 -9.4007 5 0 0 310
TRACK: 10 -0.00774562 -0.0731236 -7.17847 5 1 0 130

Выходной файл STARLight

Полное моделирование

• Симуляция

На данном этапе происходит симуляция детектирования частиц с помощью Athena реальным детектором: получающиеся адроны проходят через детектирующую среду, и эти взаимодействия моделируются с помощью GEANT4.

Входной файл для симуляции – HepEVNT, не ASCII. Требуется перевод сгенерированных событий в нужный формат.

• Реконструкция

Алгоритмами реконструкции и оцифровки являются те же программные пакеты, которые используются для реконструкции реальных данных ATLAS, кластеризации областей потенциально интересной физики на основе отклика детектора и применения критериев для определения различных типов частиц.

- Задача: Перевод ASCII в НерЕVNT
- Решения:
 - Написание конфига по переводу (может быть потеря событий);
 - Сшивка stand-alone и внутреннего STARLight.

Сшивка stand-alone и внутреннего STARLight

• Git — самая популярная современная система управления версиями. Данный проект развивается много лет и имеет миллионы пользователей, многие из которых являются профессиональными разработчиками ПО. Система используется для управления версиями большого числа проектов по разработке программного обеспечения.

Workflow Overview – возможность скопировать Athena/Generators/Starlight_i и подключить локальные библиотеки.

Таким образом, проводится генерация событий внутренним STARLight, выдающего выходной файл формата HepEVNT, но библиотеки, при генерации, принадлежат stand-alone версии STARLight.

Documentation Guides - Tutorials - Links -		
	Workflow Overview Last update: 12 Jan 2021 [History] [Edit]	
	Introduction	
2007	This page gives you a quick overview of the ATLAS code development workflow. It is assumed that you worked through the main git development tutorial at least once. Please refer back to that if you are not clear on any points.	
y Locally	The workflow that ATLAS has adopted is basically GitLab Flow, which offers enough flexibility to manage ATLAS use cases but is structured enough to avoid a mess.	
	You may also find it handy to refer to our git cheat sheet as a quick reference to the most common command and terms.	
lequest	Reminder: one time steps	
cts	You only need to do these steps once, but for completeness we remind you to:	
gration	1. Check you have done your git environment setup. 2. Check you have made a fork of the main ATLAS repository.	
t	One point to reemphasise is make sure that atlasbot is a developer in your fork or continuous integration results are not published properly.	
Reference		
	Setup your basic environment	
	Assuming that you will work on an lxplus-like machine you want to start the development workflow by setting up decently modern version of git:	
SVN	ssh lxplus setupATLAS lsetup git python	
Between	Clana	
	CICITE	
	Cloning to AFS is slow, so if you have an alternative then we recommend that (e.g., a private local disk area, or even	

ATLAS Softwa Tutorial Home Basics Help With Git **Detailed Tutoria** Set Up Fork the Repos Clone Reposito Develop Code Make a Merge Resolving Conf Code Review Continuous Inte Review a reque Reference Workflow Qui Git-ATLAS Remote login Misc Migration from Git tips Merge Package Branches Feedback 🖉

(2) atlas > (2) athena				
ATLAS Project ID: 53790		🖈 Star 153		
- 88,184 Commits 🦻 26 Branches 🖉 2,045 Tag	gs 🗈 110.6 MB Files 🗔 673.8 MB Storage 🧳	230 Releases		
The ATLAS Experiment's main offline software	repository			
DOI 10.5281/zenodo.2641997 Doxygen master				
master v athena		History Find file		
Merge branch 'GeantTruthThininng_re-entrant-cleanup' into 'master' ••• e4ea2a93 bannes Elmsheuser authored 9 hours ago				
README TA Other				
Name	Last commit	Last update		
🖨 .devcontainer	vscode devcontainer: move motd display to	4 months ago		
🖿 .vscode	add vscode setting for gitlab extension	7 months ago		
AsgExternal/Asg_Test	Update ASG test inputs	11 months ago		
AtlasGeometryCommon	Disable unit test post-processing where not	3 weeks ago		
🖨 AtlasTest	TestTools: fix link to cmake documentation	6 days ago		
🖨 Build	Removed the excess "" from the script.	4 months ago		
Calorimeter	CaloDepth Tool use enum to avoid too many	3 days ago		
Commission	rename uncalibrated TopoCluster container	1 month ago		
Control	Merge branch 'jetConfigForReco' into 'master'	5 days ago		

Повышение статистики

HTCondor - это высокопроизводительная вычислительная служба. Его задача - решать, как и когда задания, представленные пользователями, должны выполняться с помощью распределенной вычислительной службы. Как только они попадают в начало очереди, они автоматически отправляются на некоторые рабочие узлы службы распределенных вычислений. Затем задания выполняются на узлах, назначенных HTCondor. По завершении каждого из них пользователю возвращаются все результаты, а также все возникшие ошибки.

Ограниченное экранное время lxplus ведет за собой невозможность проведения симуляции и реконструкции более 100 событий, что является слишком малой статистикой;

Преимущества: возможность выполнить практически любую задачу; Большой выбор временных промежутков в течение которых кондор должен провести свою работу.

executable universe output error log max_retries #request_me #request_di #MAX_TRANSF +JobFlavour queue argum	<pre>= run_reco\$(ProcId).sh = vanilla = output\$(ClusterId).\$(ProcId) = log\$(ClusterId).\$(ProcId) = log\$(ClusterId) = 3 mory = 14000MB .sk = 15000MB ER_OUTPUT_MB = 14420 = "workday" ments from /public/prunTest/condortest/main_100k_simAndReco/sim/amount0to9</pre>
#! /bin/sh	
SEED=\$RANDOM echo \$SEED nEvent=10000 echo \$nEvent #setupATLAS export ATLAS source \${ATLA asetup Athena Sim_tf.py -outputHITS AMIConfig	LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase S_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh ,21.0.93,here inputEvgenFile '/afs/cern.ch/user/a/azakharo/public/build/Testing/KlKs_100k.EVNT.pool.roo File 'KlKs_10k_Skip10k.HITS.pool.root'skipEvent=10000 s3469maxEvents \$nEventrandomSeed \$SEED

/eos/user/a/azakharo/star analysis/100k full/sim

espresso	= 20 minutes
microcentury	= 1 hour
longlunch	= 2 hours
workday	= 8 hours
tomorrow	= 1 day
testmatch	= 3 days
nextweek	= 1 week

ParticleGun

Генератор ParticleGun (PG) является еще одним способом смоделировать несколько событий, отдельную частицу с распадом или без и многие другие интересующие реакции, используя при этом программный пакет GEANT4. Его достоинство в том, что PG позволяет передавать генератору общие кинематические и идентификационные образцы частиц, т.е. генератор не использует сечение процесса, а только его кинематику.

РG используется в данной работе как независимый MC генератор для сравнения полученных данных с STARLight.

#! -*- python -*-# Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration include("GeneratorUtils/StdEvgenSetup.py") theApp.EvtMax = 10000 import ParticleGun as PG pg = PG.ParticleGun() pg.randomSeed = 123456 pg.sampler.pid = {310,130} pg.sampler.mom = PG.EEtaMPhiSampler(energy=10000, eta=[-2,2]) topSeq += pg include("GeneratorUtils/postJ0.CopyWeights.py") include("GeneratorUtils/postJ0.PoolOutput.py")

Несмотря на простоту в использовании, для корректного сравнения необходимо использовать кинематику, полученную из STARLight. Для реконструкции использовались официальные образцы симуляции PG (с учетом геометрии run 2).

Критерии отбора (STARLight)

Pаспределения (STARLight)

Pаспределения (ParticleGun)

14

Сравнение STARLight и PG

15

Сравнение STARLight и PG

В случае STARLight виден пик в 0.1, а в случае PG - большинство событий расположено практически в 0, т.е. при розыгрыше событий MC PG большинство пионов разлетаются под углом 180 градусов.

Детектор ATLAS

Схематичное изображение расположения детекторов БАК

Распределения (экспериментальные данные)

Набор данных:

- Pb+Pb run 2018;
- 39 good runs;
- $L_{int} = 1.44 \text{ nb}^{-1};$
- $N_{tot} = 220 M;$

Критерии отбора

- Триггер + Lumiblock;
 - HLT_mb_sptrk_exclusiveloose_vetosp1500_L1VTE20
 - N ~ 42 M
- Ntracks = 2;
- $\Sigma Q = 0;$
- Track Seeding

Распределения (экспериментальные данные)

d01

Двухмерное распределение $d_{01}(d_{02})$

Для выделения событий, отвечающих за распад короткоживущего каона, применим условие «коридор», исходя из результатов, полученных при анализе MC.

Используем отбор, задаваемый функцией $d_{01} \cdot d_{02} < -16$

Распределения (экспериментальные данные)

Сравнивая распределения по поперечному импульсу двух пионов для МС данных и экспериментальных данных, а также прошлые и текущие критерии отбора, приходим к выводу о необходимости наложения следующих критериев:

- отбор «коридор» + $d_{01} \cdot d_{02} < -16$;
- $\alpha < 0.9;$
- pT < 0.3;
- $|\eta| < 2.5.$

Сравнение экспериментальных данных и МС

Fit(Gauss): Mean = $0.498854 \pm 0.000114 \text{ GeV/c}^2$

Табличное значение PDG массы каона:

 $M(K_{I}^{0}) = M(K_{S}^{0}) = 0.497614 \text{ GeV/c}^{2}$

Для корректного сравнения, построим распределения STARLight и PG с такими же критериями отбора.

Заключение

В данной работе:

- проводилось изучение рождения легких векторных мезонов в ультрапериферических столкновениях тяжелых ионов на примере распада векторного мезона φ на два нейтральных каона $\varphi \to K_L^0 K_S^0$ с последующим распадом на противоположно заряженные пионы $K_S^0 \to \pi^+ \pi^-$;
- Представлены методы и параметры, с помощью которых был интегрирован новый канал в программный пакет STARLight;
- Представлены методы полного моделирования выходных событий с помощью Athena;
- Представлены методы увеличения статистики при ограниченном экранном времени в случае локальной работы;
- Отражены критерии отбора событий, по которым проводился анализ;
- Представлено сравнение с независимым MC генератором ParticleGun и экспериментальными данными;

В качестве результатов работы приведены полученные распределения и их сравнение, доказывающее исправную работу модифицированного программного пакета STARLight и правильность выбранных критериев отбора.

Спасибо за внимание!

BACK UP

Команды

setupATLAS

1. Генерация: Asetup 21.6.20, AthGeneration

Gen_tf.py --ecmEnergy=5020 --jobConfig=421120 --maxEvents=400000 --outputEVNTFile = KlKs_400k.EVNT.pool.root

2. Симуляция: asetup Athena,21.0.105,here

Sim_tf.py --inputEvgenFile '/afs/cern.ch/user/a/azakharo/public/build/Testing/KlKs_400k.EVNT.pool.root' --outputHITSFile 'KlKs_10k_Skip120k.HITS.pool.root' --skipEvent=120000 --AMIConfig s3537 --maxEvents \$nEvent

3. Оцифровка, Реконструкция: asetup Athena, 21.0.102, here

Reco_tf.py --inputHitsFile star_analysis/sim400k/KIKs_10k_Skip200k.HITS.pool.root --outputAODFile AOD_KIKs_10k_Skip200k.pool.root --AMIConfig r11621 --maxEvents \$nEvent

Рождение легких мезонов

При ультрапериферических взаимодействиях образуются векторные мезоны, сечение образования которых представлены на таблице.

На сегодняшний день, ρ-мезон довольно хорошо исследован в экспериментах STAR, ALICE, J/ψ — на PHENIX, CMS. ω-мезон, имея близкую к ρ-мезону массу, распадается на два противоположно заряженных пиона и один нейтральный, и, соответственно, при восстановлении будет заметен пик, близкий к ρ-мезону, но его довольно сложно идентифицировать. На данный момент не исследованным остается только образование φ-мезона.

Существуют каналы распада φ -мезона на положительный и отрицательные каоны, т.е. $\varphi \to K^+K^-$ и на долгоживущий и короткоживущий каоны, т.е. $\varphi \to K^0_L K^0_S$. В данной работе предполагается детальное исследование по одному из каналов распада — $\varphi \to K^0_L K^0_S$

Таблица 1.1 — Мезоны и их сечения образования

Meson	Au+Au, RHIC $\sigma(mb)$	Pb+Pb, LHC $\sigma(mb)$
$ ho^0$	590	5200
ω	59	490
φ	39	460
$\mathrm{J}/\psi,$	0.29	32
Υ		150
$- ho^0 ho^0$		8.8
$\omega\omega$		0.073
$\varphi \varphi$		0.076
$ ho^0\omega,$		1.6
$ ho^0 arphi$		1.6
$ ho^0~{ m J}/\psi$		0.2

Class Diagram STARLight

3 доп.

+ operator <<()

Decay modes

		(1020) DECAY MODES	
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Г1	K^+K^-	(49.2 ±0.5)%	S=1.3
Γ2	$\kappa^0_L \kappa^0_S$	(34.0 ±0.4)%	S=1.3
Г ₃ Г₄ Г₅	$\rho \pi + \pi^+ \pi^- \pi^0$ $\rho \pi + \pi^- \pi^0$	(15.24 ±0.33)%	S=1.2
Г ₆	$\eta\gamma$	(1.303±0.025) %	S=1.2

K DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
	Hadronic modes		
$\pi^0\pi^0$	(30.69±0.05) %		209
$\pi^{+}\pi^{-}$	(69.20±0.05) %		206
$\pi^+\pi^-\pi^0$	$(\begin{array}{cc} 3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) imes 10$	₀ –7	133

K ⁺ DECAY MODES	Frac	tion (Γ _i /Γ)	Confidence level (MeV/c)			
Leptonic and semileptonic modes						
$e^+\nu_e$	(1.582±0.007)>	< 10 ⁻⁵		247	
$\mu^+ \nu_{\mu}$	(63.56 ±0.11) %	6	S=1.2	236	
$\pi^0 e^+ \nu_e$	(5.07 ±0.04) %	6	S=2.1	228	
Called K_{e3}^+ .						
$\pi^{0}\mu^{+}\nu_{\mu}$	(3.352±0.033) %	6	S=1.9	215	
Called $K_{\mu3}^+$.						
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ±0.04)>	< 10 ⁻⁵	S=1.1	206	
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	(4.247±0.024)>	< 10 ⁻⁵		203	
$\pi^+\pi^-\mu^+\nu_\mu$	(1.4 ±0.9)>	< 10 ⁻⁵		151	
$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	<	3.5	< 10 ⁻⁶	CL=90%	135	
Hadronic modes						
$\pi^+\pi^0$	(20.67 ±0.08) %	6	S=1.2	205	
$\pi^{+}\pi^{0}\pi^{0}$	(1.760±0.023) %	6	S=1.1	133	
$\pi^{+}\pi^{+}\pi^{-}$	(5.583±0.024) %	6		125	

$\mathbf{d}_{\mathbf{0}}$ и alpha

Track Seeding

Синее –первичная вершина ($\phi \rightarrow K^0_{\ L} K^0_{\ S}$), красное –вторичная ($K^0_{\ S} \rightarrow \pi^+ \pi^-$)

Восстановление треков -> экстраполируем трек до плоскости первой вершины (смещение относительно перв. Вершины)

 $\alpha = 1 - (\arccos(\cos(\varphi 1 - \varphi 2))/\pi)$ $\varphi 1, \varphi 2 -$ азимутальные углы треков

Пик в области 0.1 GeV, связан с практически «стоячим» рождением φ-мезона, т.е. у него очень маленький поперечный импульс. При распаде масса φмезона делится пополам и является вкладом в поперечный импульс дочерних частиц. Таким образом, *π*-мезоны, образованные после распада короткоживущего каона, имевшего поперечный импульс, будут иметь небольшой поперечный импульс, но больший, чем у φ-мезона.

Струи – адронизация высокоэнергетичных глюонов и кварков. d0 измеряется в мм.

5 доп.

STARLight AOD Corridor selection criteria

Распределение по псевдобыстроте первого пиона

Распределение по псевдобыстроте второго пиона

eta 2

57225

1.32

0.001421

PG AOD Corridor selection criteria

Распределение по псевдобыстроте первого пиона

Распределение по псевдобыстроте второго пиона

STARLight exp selection criteria

Двухмерное распределение $d_{01}(d_{02})$

Распределение по псевдобыстроте первого пиона

Распределение по псевдобыстроте второго пиона

8 доп.

PG exp selection criteria

Двухмерное распределение $d_{01}(d_{02})$

Распределение по псевдобыстроте первого пиона

Распределение по псевдобыстроте второго пиона

9 доп.

Сравнение $d_{01} \cdot d_{02} < -25$; 16; 2

