Методы повышения чувствительности анализа и оценка фона Z+струи в исследовании ассоциированного рождения Z-бозона с фотоном в эксперименте ATLAS

Научный руководитель: Солдатов Е.Ю. Консультант: Пятиизбянцева Д.Н.

Студент: Казакова К.К

WINHAMAHAHAH

Кафедра физики элементарных частиц

Описание процессов и мотивация

Исследуемый процесс: ассоциированное рождение Z-бозона с фотоном

Сигнальный процесс: $H \rightarrow Z(ll)\gamma$

Фоновые процессы: Z+jets (jet → γ), Zγ, Zγjj
 Мотивация: 1) поиск бозона Хиггса

2) процесс высокочувствителен к отклонениям от СМ

Цель анализа: повышение чувствительности исследования

Задачи анализа: 1) Создание категоризации

2) Сравнение формы фона и данных в категориях

3) Фитирование смоделированного сигнала в категориях

Сигнальный процесс: ассоциированное рождение Zγ

Фоновые процессы: W(→lv)γ, ttγ, e→γ, γ+jet, Z(→ll)γ, jet→γ
 Мотивация: процесс высокочувствителен к отклонениям от СМ
 Цель анализа: оценка числа фоновых событий jet→γ

Задачи анализа: 1) Оценка числа фоновых событий ABCD-методом

2) Создание альтернативного метода оценки

3) Оценка статистических и систематических погрешностей

Используемые отборы

Отбор фотонов

- В работе используются три фотонные изоляции: FixedCutTight, FixedCutTightCaloOnly и FixedCutLoose
- Фотон идентифицируется как <<жесткий>> (tight), если он удовлетворяет всем критериям формы ЭМ ливня
 Если по крайнем мере один из критериев формы ЭМ ливня нарушается, то фотон идентифицируется как <<мягкий>> (loose').
 Изоляция
 Изоляция
 Калориметрическая изоляция
 Балориметрическая изоляция
 Трековая изоляция
 БixedCutTightCaloOnly
 FixedCutTight
 FixedCutTight
 FixedCutTight
 FixedCutLoose
 E^{cone40} - 0.022·p⁷_T < 2.45 ГэВ
 p^{cone20}/p⁷_T < 0.05
 p^{cone20}/p⁷_T < 0.05

Процесс: $H \rightarrow Z(ll)\gamma$

- Выбран канал распада Z-бозона в пару электронов или в пару мюонов
- 81.2 ΓэΒ < m_{ιι} < 101.2 ΓэΒ, p_T/m_{ιιγ} > 0.12

Кандидаты в бозон Хиггса восстанавливаются по массе

 Z-бозона и фотону с наибольшей поперечной энергией: 123.59 ГэВ < m_{IIv} < 126.59 ГэВ

Отбор	Электроны	Мюоны	Фотоны
p_{T}^{γ}	> 10 ГэВ	$> 10 \ \Gamma$ əB	> 10 ГэВ
$ \eta $	$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 2.37$
	кроме $1.37 {<} \eta {<} 1.52$	-	кроме $1.37 {<} \eta {<} 1.52$
Идентификация	Мягкая	Средняя	Жёсткая
Изоляция	FCLoose	FCLoose	FCLoose

Процесс: ассоциированное рождение Zү

Выбран нейтринный канал распада Z-бозона (Z → vv)

Переменная	Ограничение
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130 ГэВ
E_{T}^{γ}	> 150ГэВ
Число жёстких фотонов	$N_\gamma=1$
Число лептонов	$N_e=0,N_\mu=0$
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	> 11
$ \Delta \phi(E_{ m T}^{ m miss},\gamma) $	> 0.6
$ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, j_{1}) $	> 0.4

отборы + изоляция – сигнальная область

Категоризация для $H \rightarrow Z(ll)\gamma$

Сравнение и фитирование для $H \rightarrow Z(ll)\gamma$

Data/MC

Events/1.000000 GeV

MC / Fit

Моделирование фонового распределения ⇒ процесс его параметризации ⇒ в каждой категории форма фона должна описываться аналитическими функциями

Распределения в 4 других категориях в back-up

Моделирование сигнального распределения ⇒ процесс его параметризации

Функция фитирования для сигнала: Double-Sided Crystal Ball

$$N \cdot \begin{cases} e^{t^2/2}, & -\alpha_{Lo} \leqslant t \leqslant \alpha_{Lo} \\ \frac{e^{-0.5\alpha_{Lo}^2}}{\left[\frac{\alpha_{Lo}}{n_{Lo}}\left(\frac{n_{Lo}}{\alpha_{Lo}} - \alpha_{Lo} - t\right)\right]^{n_{Lo}}, & t < -\alpha_{Lo}, \\ \frac{e^{-0.5\alpha_{Hi}^2}}{\left[\frac{\alpha_{Hi}}{n_{Hi}}\left(\frac{n_{Hi}}{\alpha_{Hi}} - \alpha_{Hi} + t\right)\right]^{n_{Hi}}, & t > \alpha_{Hi}, \end{cases}$$

где
$$t=\Delta m_{H}/\sigma_{CB}$$
 , $\Delta m_{H}=M_{Z\gamma}-\mu_{CB}$

Фон, обусловленный конфигурацией пучка

Протоны взаимодействуют с веществом в трубе ⇒ высокоэнергетичные мюоны создают большое энерговыделение посредством излучения ⇒ <mark>ложные струи</mark>

ABCD-метод оценки фона jet $\rightarrow \gamma$ (l)

R =

- В качестве переменных используются идентификационные и изоляционные критерии для фотонов, которые не должны коррелировать
- Определяется несколько типов мягких фотонов (loose'), для которых нарушаются различные критерии формы ЭМ ливня

Результат оптимизации R фактора

R- фактор	loose'2	loose'3	loose'4	loose'5			
	FixedCutTight, без ограничения						
MK	1.05 ± 0.15	1.14 ± 0.15	1.19 ± 0.14	1.39 ± 0.17			
Данные	1.4 ± 0.3	1.3 ± 0.3	1.3 ± 0.3	1.3 ± 0.3			
]	FixedCutTigh	t, ограничени	и $e=25.45$ Гэ	В			
MK	1.06 ± 0.15	1.15 ± 0.16	1.21 ± 0.15	1.40 ± 0.17			
Данные	1.01 ± 0.18	1.02 ± 0.18	1.01 ± 0.18	1.01 ± 0.17			
FixedCut	Гight, трек. и	нверсия + ог	траничение =	25.45 ГэВ			
MK	1.01 ± 0.12	1.15 ± 0.12	1.29 ± 0.13	1.58 ± 0.16			
Данные	1.07 ± 0.10	1.13 ± 0.10	1.15 ± 0.10	1.15 ± 0.10			
	FixedCutTightCaloOny						
MK	1.06 ± 0.10	1.14 ± 0.11	1.22 ± 0.10	1.40 ± 0.12			
Данные	1.07 ± 0.10	1.13 ± 0.10	1.15 ± 0.10	1.15 ± 0.10			

Выбрана наиболее оптимальная изоляция FixedCutTightCaloOnly

ABCD-метод оценки фона jet $\rightarrow \gamma$ (II)

Число событий в областях определяется как:

 $N_A = N_A^{\text{sig}} + N_A^{\text{bkg}} + N_A^{\text{jet} \to \gamma};$

 $N_B = c_{\rm B} N_A^{\rm sig} + N_B^{\rm bkg} + N_B^{\rm jet \to \gamma};$ $N_C = c_{\rm C} N_A^{\rm sig} + N_C^{\rm bkg} + N_C^{\rm jet \to \gamma};$

 $N_D = c_D N_A^{\text{sig}} + N_D^{\text{bkg}} + N_D^{\text{jet} \to \gamma};$

Параметры утечки сигнала в КО

		c_B	c_C	c_D
>	Значение	0.0713 ± 0.0002	$0.00879 {\pm} 0.00007$	0.00070 ± 0.00002

С учётом R фактора на данных, получим уравнение:

$$N_{\rm A}^{\rm sig} = \widetilde{N}_{\rm A} - R(\widetilde{N}_{\rm B} - c_{\rm B}N_{\rm A}^{\rm sig}) \frac{\widetilde{N}_{\rm C} - c_{\rm C}N_{\rm A}^{\rm sig}}{\widetilde{N}_{\rm D} - c_{\rm D}N_{\rm A}^{\rm sig}}$$

• Количества данных и фоновых событий в каждой области:

	Data	$\mathrm{W}\gamma~\mathrm{QCD}$	$ m W\gamma~EWK$	$W(e\nu), top, tt$	$tt\gamma$	$\gamma+{ m jet}$	$Z(ll)\gamma$
А	24946 ± 158	3655 ± 22	145.9 ± 0.7	3070 ± 12	213 ± 3	5016 ± 52	270 ± 4
В	5163 ± 72	337 ± 8	14.1 ± 0.2	140.9 ± 0.5	21.9 ± 1.0	161 ± 9	15.1 ± 1.3
С	1586 ± 40	32 ± 2	1.42 ± 0.07	41.92 ± 0.14	2.2 ± 0.3	36 ± 4	2.4 ± 0.4
D	2805 ± 53	3.0 ± 0.6	0.21 ± 0.03	0 ± 0	0.82 ± 0.19	0.8 ± 0.4	0.19 ± 0.11
					$\int a = c_D - R_0$	C_{RCC} :	

Решение уравнения имеет вид:
$$N_{\rm A}^{\rm sig} = \frac{b - \sqrt{b^2 - 4ac}}{2a}$$
, где, где $\begin{cases} a = c_D - Rc_B c_C; \\ b = \widetilde{N}_{\rm D} + c_D \widetilde{N}_{\rm A} - R(c_B \widetilde{N}_{\rm C} + c_C \widetilde{N}_{\rm B}); \\ c = \widetilde{N}_{\rm D} \widetilde{N}_{\rm A} - R \widetilde{N}_{\rm C} \widetilde{N}_{\rm B}. \end{cases}$

 $c_i = \frac{N_i^{\rm sig}}{N_A^{\rm sig}} \qquad \square$

 $\widetilde{N}_i = N_i - N_i^{
m bkg}$

Подставляя найденное решение в систему уравнений, получим <mark>центральное значение событий в</mark> сигнальной области с учетом R фактора на данных: N_A^{jet → γ} = 1960

Оценка погрешностей

Статистическая погрешность: числа событий в каждой контрольной области были независимо проварьированы на ±1σ для данных и всех фонов. Полученные значения просуммированы в квадратурах.

Итоговая статистическая погрешность: δ = 4%

Систематическая погрешность:

- варьирование изоляционного промежутка и использование альтернативных loose' (24%)
- погрешность от различных МК генераторов и моделей партонных ливней (9%)
- погрешности на эффективность реконструкции фотона (1.4%)
- $\sigma_{iso}^{c_B} = \delta_{iso}^{eff} \cdot (c_B + 1)/c_B$

- $\sigma_{\text{ID}}^{\text{c}_{\text{C}}} = \delta_{\text{ID}}^{\text{eff}} \cdot (c_{C} + 1)/c_{C}$ $\sigma_{\text{iso}}^{\text{c}_{\text{D}}} = \delta_{\text{iso}}^{\text{eff}} \cdot (c_{B} + 1)/c_{B}$ $\left\{\begin{array}{l} \delta^{\text{eff}}_{\text{iso}} = 0.013\\ \delta^{\text{eff}}_{\text{iD}} = 0.013\end{array}\right\}$

$$N_A^{jet \to \gamma} = 1960 \pm 80$$
(стат.) ± 510 (сист.)

МК Zj и Multijet предсказывают 1560 ± 1240 событий

• $\sigma_{\text{ID}}^{\text{c}_{\text{D}}} = \delta_{\text{ID}}^{\text{eff}} \cdot (c_C + 1)/c_C$

Итоговая систематическая погрешность: δ = 26%

Метод максимального правдоподобия

• Альтернативный способ оценки фона

Функция правдоподобия: $L(N_{ji}|f_{F_{ji}}, f_{N_j}) = \prod_{j=A}^{B,C,D} \prod_{i=1}^{N_{bins}} Pois(N_{ji}|\nu_{b_{ji}} + \nu_{\gamma_{ji}}f_{F_{ji}} + \nu_{s_{ji}}f_{N_j})$

- *f_{Fji} –* параметр, на который умножается оцениваемый фон в бинах в областях A, B, C, D
- *f_{Ni} –* параметр, на который умножается МК сигнал в областях A, B, C, D

 $u_{b_{ji}}$, $u_{s_{ji}}$ и $u_{\gamma_{ji}}$ – количество событий в МК фонах, МК сигнале и оцениваемом фоне в бинах в областях А, В, С, D соответственно

$$\ln L = \sum_{j,i} \operatorname{Pois}(N_{ji}|\nu_{b_{ji}} + \nu_{\gamma_{ji}}f_{F_{ji}} + \nu_{s_{ji}}f_{N_j})$$

 $\frac{\partial \ln L}{\partial f_{F_{jj}}} = 0, \frac{\partial \ln L}{f_{N_j}} = 0$ ССС помощью пакета RooFit

Преимущества модели:

- > учёт биннига внутри регионов
- ▶ не требует оптимизации R фактора на MK и на данных

Условия для фита: $1 = \frac{\nu_{\gamma_{Ai}} f_{F_{Ai}} \cdot \nu_{\gamma_{Di}} f_{F_{Di}}}{\nu_{\gamma_{Bi}} f_{F_{Bi}} \cdot \nu_{\gamma_{Ci}} f_{F_{Ci}}}$ $f_{F_{Bi}} = f_{F_{Di}}$

Оценка:
$$\mathsf{N}_{jet
ightarrow \gamma} =
u_{\gamma_{Ai}} f_{F_{Ai}}$$

Результаты фитирования

Фитирование производилось для двух различных переменных с разным биннигом

- Σиннинг выбирался на основе значения χ²/N_{dof}

Оценка погрешностей для ММП

Статистическая погрешность:

• Отношение функций правдоподобий

Значения, при которых Λ = 0.5 соответствуют ±σ

$$\lambda(\theta_k) = rac{L(heta_k, \hat{\hat{ heta}}_{l \neq k})}{L(\hat{ heta}_k, \hat{ heta}_{l \neq k})} \longrightarrow \Lambda = -\ln \lambda(heta_k)$$
, где $\theta_k = f_{F_{ji}}, f_{N_j}$

Статистические погрешности оценивались с помощью RooFit и составили: для _п 1882⁺⁷⁴₋₇₀, для _ф 1743⁺⁶⁹₋₆₅ _{δ_{stat} = 4%}

= 28%

Систематическая погрешность:

 $\boldsymbol{\Sigma}$

Оценивалась аналогичным для стандартного ABCD-метода образом

	Центральное значение (η_{γ})	1882^{+74}_{-70}
	loose'3	-401
n.	loose'4	-447
·γ	loose'5	-512
<u></u>	Изоляционный зазор +0.15 GeV	-5
δ _{sist} = 28%	Изоляционный зазор -0.15 GeV	+16
	Различные генераторы	-150

Центральное значение (ϕ_{γ})	1743^{+69}_{-65}	
loose'3	-353	<u> </u>
loose'4	-406	
loose'5	-467	
Изоляционный зазор +0.15 GeV	-1	N
Изоляционный зазор -0.15 GeV	-4	δ_{sist}
Различные генераторы	-155	

2.00 V(^y)

Итоговая оценка методом ММП:

 $N_A^{\text{jet} \to \gamma} = 1882^{+74}_{-70}$ (стат.) ± 527(сист.)

 $N_A^{\text{jet} \to \gamma} = 1743^{+69}_{-65}$ (стат.) ± 488(сист.)

Оценки для разных переменных совпадают в пределах погрешностей со значениями, полученными стандартным ABCD-методом, а также согласуются друг с другом 12/13

Заключение

В соответствии с поставленными задачами в результате данной работы:

- создана категоризация для процесса H → Z(ll)γ и повышена чувствительность анализа со значения ξ = 0.840 ± 0.003 до значения ξ = 1.29 ± 0.02. Произведено сравнение формы фона и данных, а также фитирование смоделированного сигнала в категориях
- получен оптимальный отбор по координатной переменной |∆z| для ассоциированного рождения Zγ, в результате фон, обусловленный конфигурацией пучка, подавлен на 99.7 ± 0.9%

<mark>оценено центральное значение фоновых событий jet</mark>→γ для Zγ в сигнальной области A методом ABCD, а также оценены статистические и систематические погрешности. В результате получено N_A^{jet}→γ = 1960 ± 80(стат.) ± 510(сист.). Погрешность оценки фона, полученной на основе данных, значительно меньше погрешности оценки из MK

разработан способ оценки jet→ү на основе метода максимального правдоподобия и получена оценка числа фоновых событий в сигнальной области А для различных переменных, которая составляет N_A^{jet→γ} = 1882⁺⁷⁴₋₇₀ (стат.) ± 527(сист.) для η_γ и N_A^{jet→γ} = 1743⁺⁶⁹₋₆₅(стат.) ± 488(сист.) для φ_γ. Результаты совпадают в пределах погрешностей со значением, полученным ABCDметодом, а также согласуются друг с другом **BACK-UP**

Машинное обучение и ММП

Алгоритм MLP:

Функция активации: $\sigma(x) = \frac{1+e^{-x}}{1+e^{-x}}$

$$\frac{1}{1 + e^{-x}}, \qquad \sigma(x) = \tanh(x).$$

Нейроны в разных слоях соединены между собой взвешенными связями. При передаче значения от одного нейрона к другому оно домножается на соответствующий вес связи.

1

Классификатор BDTG:

В каждом узле определяется такая переменная и отбор по ней, которые наилучшим образом разделяют события.

Метод МП:

$$\mathcal{L}_n(X_1, X_2, ..., X_n | \vec{\theta}) = \prod_{i=1}^n \mathcal{L}_1(X_i | \vec{\theta})$$

Оценка: $\hat{\vec{\theta}} = \operatorname{argmax} \mathcal{L}(X_1, X_2, ..., X_n | \vec{\theta})$

Решение системы дает искомую оценку

$$\begin{cases} \frac{\partial}{\partial \theta_1} \ln \mathcal{L}(X_1, X_2, ..., X_n | \vec{\theta}) = 0, \\ \frac{\partial}{\partial \theta_2} \ln \mathcal{L}(X_1, X_2, ..., X_n | \vec{\theta}) = 0, \\ \dots & \dots \\ \frac{\partial}{\partial \theta_k} \ln \mathcal{L}(X_1, X_2, ..., X_n | \vec{\theta}) = 0, \end{cases}$$

Критерии рабочих точек и КО

 $loose'2: w_{s3}, F_{side}$

 $loose'3: w_{s3}, F_{side}, \Delta E$

 $loose'4: w_{s3}, F_{side}, \Delta E, E_{ratio}$

 $loose'5: w_{s3}, F_{side}, \Delta E, E_{ratio}, w_{tot}$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

A (CP): $E_T^{cone40} - 0.022 p_T^{\gamma} < 2.45$, tight B (KO): 2.45 + isogap < $E_T^{cone40} - 0.022 p_T^{\gamma}$, tight C (KO): $E_T^{cone40} - 0.022 p_T^{\gamma} < 2.45$, non-tight D (KO): 2.45 + isogap < $E_T^{cone40} - 0.022 p_T^{\gamma}$, non-tight

ws3 – ширина электромагнитного ливня с использованием трёх

- стриповых (первых слоёв ЭМ калориметра) слоёв вокруг стрипового слоя с максимальной энергией
- Fside доля энергии вне трёх стриповых слоёв, но внутри семи слоёв
 - ∆Е разница энергий стриповых слоёв, где в одном слое выделилась вторая по величине энергия, и слоя, где выделилась наименьшая энергия

Eratio – отношение разности энергий, ассоциированных с

- наиболее высоким и вторым по величине выделением энергии к сумме этих энергий
- 🕨 wtot полная поперечная ширина ливня

	Различные МК генераторы и модели партонных ливней				
Параметры утечки	MadGraph+Pythia8, Sherpa 2.2 MadGraph+Herwig7, MadGraph+Pythia8				
$c_{ m B}$	0.0713 ± 0.0002	0.1000 ± 0.0011	29%		
$c_{ m C}$	0.00879 ± 0.00007	0.0092 ± 0.0003	4%		
c_{D}	0.00070 ± 0.00002	0.00099 ± 0.00010	29%		
$jet ightarrow \gamma$	1960	1785	9%		

Ассоциированное рождение Zү

Фоновые процессы:

- конечные состояния $\tau \nu \gamma$ и $l \nu \gamma$ от КХД и электрослабого рождения $W \gamma$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируются детектором;
- события *γ*+ струя, в которых большой *E*_T^{miss} возникает из комбинации реального *E*_T^{miss} от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, t-кварк и $t\bar{t}$, где электрон в конечном состоянии неверно идентифицируется как фотон $(e \to \gamma)$;
- события от рождения tt̄γ, когда один или оба W бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ-лептоны, которые либо распадаются на адроны, либо не реконструируются;
- $Z(\nu\bar{\nu})$ + струя и многоструйные события, где одна из струй неверно идентифицируется как фотон (*jet* $\rightarrow \gamma$);
- события $Z(ll) + \gamma$ (преимущественно τ -лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус $ec{p}_{
m T}^{\,
m miss}\,=\,-\sumec{p}_{
m T}^{\,f}$

Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$ = $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1-\rho_{LT}^2))$

где σ_L – дисперсия измерения потерянного поперечного импульса в продольном направлении

ρ_{LT} – корреляционный фактор измерения продольной и поперечной компонент потерянного поперечного импульса

Категоризация

Алгоритм MLP

Настройки алгоритма:

функция активации: tanh количество эпох обучения: 600 структура скрытых слоёв: N + 10, N, N преобразования входных данных: N количество итераций: 5

$$< S^2 >= 1/2 \cdot \int \frac{(yS - yB)^2 \cdot dy}{yS + yB}$$

 $I_i = \overline{x}_i^2 \sum_{j=1}^n (\omega_{ij}^{(1)})^2, \ i = 1, ..., n_{var}$

Переменная	Определение	$< S^{2} >$	I_m	Ранг
$p_{ m Tt}^{ll\gamma}$	p_{T} частицы, ортогональный вектору	0.084	1370	1
	разности между импульсами Z -бозона и γ			
p_{T}^{γ}	Поперечный импульс фотона	0.030	1184	2
$log ME_{kDVal}$	$2 \cdot [log(ME_{ggH}) - log(ME_{bkg})]$	0.119	475	3
$\mathrm{MET}_{\mathrm{Jets}}$	Потерянный поперечный импульс системы jj	0.017	147	4
$\Delta\eta^{Z,\gamma}$	Разница псевдобыстрот между Z -бозоном и γ	0.033	44	5
$\cos^{H,Z\gamma} heta$	Косинус угла между $H \to Z\gamma$ и $Z\gamma$	0.031	42	6
$\Delta \phi^{Z,\gamma}$	Азимутальный угол между Z -бозоном и γ	0.011	36	7
$log ME_{ggH}$	Логарифм матричного элемента ggH	0.118	17	8

Алгоритм MLP

Классификатор BDTG

Настройки классификатора:

количество деревьев решений: 2000 минимальный процент событий в узле: 2.5% тип бустинга BoostType: Grad константа обучения для алгоритма градиентного бустинга: 0.1 количество отрезков, на которые разбивается диапазон значений переменной для определения оптимального отбора nCuts: 20 максимальная глубина дерева MaxDepth: 3

Переменная	Определение	$< S^{2} >$	I_m	Ранг
$\Delta \phi^{Z,\gamma}$	Азимутальный угол между Z -бозоном и γ	0.157	0.140	1
$\Delta \phi_{Z\gamma,jj}$	Азимутальный угол между $Z\gamma$ и системой jj	0.030	0.036	2
$\Delta\eta^{Z,\gamma}$	Разница псевдобыстрот между Z -бозоном и γ	0.052	0.111	3
$log ME_{kDVal}$	$2 \cdot [log(ME_ggH) - log(ME_bkg)]$	0.092	0.110	4
$\Delta R_{\gamma,j}^{\min}$	Минимальное расстояние между $Z\gamma$ и системой jj	0.072	0.110	5
$log ME_{ggH}$	Логарифм матричного элемента ggH	0.124	0.110	6
$\eta^{ m Zepp}$	$ \eta_{Z\gamma}-0.5\cdot(\eta_{j_1}+\eta_{j_2}) $	0.026	0.100	7
$p_{\mathrm{Tt}}^{ll\gamma}$	p_{T} частицы, ортогональный вектору	0.110	0.096	8
	разности между импульсами Z -бозона и фотона			
p_{T}^{γ}	Поперечный импульс фотона	0.048	0.095	9

$$I_m = |a_m| \sqrt{(1.0 - s_m)}$$

Классификатор BDTG

MLP и BDTG

Сравнение фона и данных

Фитирование сигнала

Фон, обусловленный конфигурацией пучка

Распределение по изоляции и R (loose'2)

Оптимизация R фактора на данных (I/IV)

• Оптимизация не применима из-за корреляций и ограниченной статистики

Оптимизация R фактора на данных (II/IV)

 Изоляция: FixedCutTight, ограничение сверху 25.45 GeV

${f FixedCutTight, (upper \ cut = 25.45 \ GeV)}$							
MC							
	loose'2 loose'3 loose'4 loose'5						
R-factor 1.06 ± 0.15 1.15 ± 0.16 1.21 ± 0.15 1.40 ± 0.17							

Data-driven						
Cut	loose'2	loose'3	loose'4	loose'5		
8.45	1.1 ± 0.2	1.1 ± 0.2	1.03 ± 0.18	1.06 ± 0.18		
8.95	0.96 ± 0.18	0.97 ± 0.17	0.96 ± 0.17	0.97 ± 0.16		
9.05	1.01 ± 0.18	1.02 ± 0.18	1.01 ± 0.18	1.01 ± 0.17		
9.45	1.08 ± 0.19	1.10 ± 0.19	1.10 ± 0.19	1.12 ± 0.18		
9.95	1.03 ± 0.18	1.03 ± 0.18	1.16 ± 0.19	1.16 ± 0.19		
10.45	1.1 ± 0.2	1.1 ± 0.2	1.2 ± 0.2	1.2 ± 0.2		
10.95	1.2 ± 0.2	1.2 ± 0.2	1.3 ± 0.2	1.3 ± 0.2		

Для loose'2 для данных δ = 18%

Достаточно большая погрешность

Оптимизация R фактора на данных (III/IV)

Оптимизация применима

Для loose'2 для данных δ = 11%

E^{cone40} - 0.022 p^γ_τ, [GeV]

Оптимизация R фактора на данных (IV/IV)

Применимые значения R фактора на данных

Для loose'2 для данных δ = 9%

Метод максимального правдоподобия

Variable: η_{γ}								
N _{bins}	Estimate	R factor	A: χ^2/N_{dof}					
3	1965^{+78}_{-74}	1.09 ± 0.05	0.70					
4	1882^{+74}_{-70}	1.06 ± 0.04	1.07					
5	1834_{-69}^{+74}	1.03 ± 0.03	0.90					
6	1794_{-74}^{+78}	1.01 ± 0.03	0.83					
7	1744^{+80}_{-77}	0.98 ± 0.03	0.72					
8	1694_{-68}^{+75}	0.96 ± 0.02	0.45					

Variable: ϕ_{γ}							
$\mathrm{N}_{\mathrm{bins}}$	Estimate	R factor	A: χ^2/N_{dof}				
3	1780^{+74}_{-69}	0.99 ± 0.05	1.53				
4	1801^{+72}_{-68}	0.99 ± 0.04	0.34				
5	1743^{+69}_{-65}	0.97 ± 0.04	0.96				
6	1784_{-65}^{+72}	0.99 ± 0.03	0.51				
7	1723_{-65}^{+70}	0.97 ± 0.03	0.82				
8	1763_{-68}^{+73}	0.98 ± 0.03	0.43				

поперечная энергия, выделившаяся в калориметре в изолированном регионе (в конусе вокруг кластера, исключающая сердцевину кластера) внутри конуса раствором $\Delta R = 0.4$ и 0.2

Процессы $H \rightarrow Z(ll)\gamma \mu Z\gamma$

Сечение $H \rightarrow Z(ll)\gamma$: $\sigma = 0.0843 \pm 0.005$ пбн

Текущий результат: $m_H = 125.09 \pm 0.21 (\text{стат.}) \pm 0.11 (\text{сист.})$ ГэВ

l^{-}		<i>q</i> ↓
		Z/γ
l^+	γ_q $\overline{\nu}$	r_q

Канал образования	m_H , ГэВ	Кол-во событий	p-tag	DSID	Сечение, пбн
ggH, Z(ll)gam	125	1.436M	p4062(m16a/e)	345316	48.52
VBF, Z(ll)gam	125	$1.155\mathrm{M}$	m p4062(m16a/e)	345833	3.779
WpH, Z(ll)gam	125	60k	p4062(m16a/e)	345320	-
WmH, Z(ll)gam	125	60k	p4062(m16a/e)	345321	1.369
ZH, Z(ll)gam	125	120k	p4062(m16a/e)	345322	0.7612
ttH, Z(ll)gam	125	$5.398\mathrm{M}$	p4062(m16a/e)	346198	0.5065

Неприменимая категоризация

Распределения по изоляции

FixedCutTight

Распределения по изоляции

FixedCutTightCaloOnly

FixedCutLoose

