Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский ядерный университет «МИФИ»

Институт ядерной физики и технологий Кафедра №40 «Физика элементарных частиц» Научно-образовательный центр НЕВОД

Исследование особенностей моделей ядроядерных взаимодействий высоких энергий

Научный руководитель: проф., д.ф.-м.н.

Петрухин А. А.

Студент:

Николаенко Р. В.

Введение

Мюонная загадка – избыток многомюонных событий в ШАЛ сверхвысоких энергий.

- Одним из возможных решений мюонной загадки является введение новой физики в процессы при ядро-ядерных взаимодействиях высоких энергий.
- Структура CORSIKA на данный момент не позволяет пользовательское изменение описания взаимодействий ядер.
- В работе рассматривается возможность использования РҮТНІА для расчета столкновений ядер в ходе моделирования ШАЛ в CORSIKA.

Цели и задачи работы

Цель работы – анализ моделей адронных взаимодействий, применяемых в моделировании ШАЛ, и разработка физических средств и программного обеспечения, необходимых для решения мюонной загадки за счет изменения характеристик взаимодействий частиц сверхвысоких энергий.

Задачами работы являются:

- Сравнение четырех наиболее актуальных моделей адронных взаимодействий, используемых в программе CORSIKA v.77402, на примере первых ядро-ядерных столкновений.
- Исследование возможности использования генератора РҮТНІА8 для описания взаимодействий космических лучей.
- Реализация интерфейса между сторонним генератором взаимодействий ядер и программой CORSIKA для получения возможности изменять параметры физических процессов при моделировании ШАЛ.
- Осуществление моделирования ШАЛ с модифицированным описанием взаимодействий ядер.

Сравнение адронных моделей, используемых в CORSIKA

Взаимодействия азот-азот, $E_0 = 10^{18}$ эВ

Тип частиц	Среднее число частиц			
	EPOS-LHC	QGSJET-II-04	SIBYLL-2.3d	DPMJET-III
γ	4.7	0	7.4	1835
Нейтральные пионы	144	296	73	0.02
Заряженные пионы	295	571	137	1495
Нейтральные каоны	38.7	67.7	28.9	123
Заряженные каоны	39.7	68.1	28.9	125
Нуклоны	33.6	41.3	38.6	115
Антинуклоны	18.6	30.8	26.1	88.9
Ядра (A ≥ 2)	0.37	1.42	1.03	0

Средние доли энергии, уносимые вторичными частицами в столкновениях ядра с массовым числом A с ядром азота, при энериги $E_0 = 10^{14}$ эВ (штриховые линии) и $E_0 = 10^{18}$ эВ (сплошные)

Проверка закона сохранения электрического заряда

Для всех событий рассчитывалась величина *Q_{sum}* как средняя сумма электрических зарядов всех вторичных частиц. В предположении об исключении ядер-осколков мишени из стека частиц генераторами рассматриваемых моделей, отношение $\frac{Q_{sum}}{Q_{total}}$ должно быть ≤ 1, где *Q_{total}* есть полный электрический заряд в данном взаимодействии.

РҮТНІА как генератор столкновений тяжелых ионов

Сравнение распределений по множественности вторичных протонов (слева) и положительных пионов π^+ (справа), образованных в столкновениях железо-азот, $E_0 = 10^{18}$ эВ, согласно РҮТНІА (модель Angantyr) и нескольких моделей адронных взаимодействий, используемых в CORSIKA.

Интерфейс между CORSIKA и PYTHIA

QGSJET-II-04 (FLUKA-INFN) A = 56 σ_{air}, mb A = 14A = 4A = 1lgE, GeV

Общая схема интерфейса. Использовалась опция «STACKIN» для моделирования ШАЛ в CORSIKA, по списку частиц первого взаимодействия.

Зависимости полного сечения ядро-воздух от энергии ядра для моделей QGSJET-II-04 и FLUKA-INFN.

Моделирование ШАЛ с использованием интерфейса CORSIKA-PYTHIA

D_{pythia} - плотность частиц на уровне детектора согласно расчету с использованием интерфейса
(QGSJET-II-04 и FLUKA-INFN применяются для всех адронных взаимодействий, кроме ядро-ядерных);
D_{def} - плотность частиц согласно обвчному моделированию (QGSJET-II-04 + FLUKA-INFN).

Моделирование ШАЛ с условием образования t-кварков в ядроядерных столкновениях

Включение процессов с топ-кварками через команду:

pythia.readString("Top:all = on");

Процессы gg $\rightarrow t\bar{t}$, q $\bar{q} \rightarrow t\bar{t}$, qq $\rightarrow tq$, и т.д.

Заключение

1. Проведено сравнение четырёх моделей адронных взаимодействий, применяемых для описания ядро-ядерных взаимодействий в программе CORSIKA.

- Построены распределения числа частиц разных типов, образованных в первом взаимодействии, и зависимости доли энергии взаимодействия, уносимой частицами разных типов.
- Модель DPMJET-III радикально отличается от других моделей. В модели SIBYLL-2.3d наблюдается нарушение закона сохранения электрического заряда.

2. Разработан интерфейс для введения изменений в процессы взаимодействий при высоких энергиях в программе CORSIKA.

- Показано, что генератор РҮТНІА пригоден для расчета ядро-ядерных взаимодействий при моделировании широких атмосферных ливней в CORSIKA.
- Создан интерфейс для осуществления совместного моделирования, включающий алгоритмы для расчета пробегов вторичных ядер. Проведенное моделирование показало, что функции распределения частиц вблизи поверхности Земли, полученные с использованием интерфейса, мало отличаются от результатов обычного моделирования.

3. При помощи созданного интерфейса изучено влияние новых процессов на развитие ШАЛ на примере включения образования t-кварков в первых ядро-ядерных взаимодействиях.

Апробация

Доклады

- The 3rd International Symposium on Cosmic Rays and Astrophysics (ISCRA-2021).
- IX Международная молодежная школа-конференция «Современные проблемы физики и технологий» (ММШК СПФТ, НИЯУ МИФИ 2022).
- The 21st International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2022).
- 37 Всероссийская конференция по космическим лучам (ВККЛ).

Публикация

 R. V. Nikolaenko, A. G. Bogdanov, R. P. Kokoulin, A. A. Petrukhin. Comparison of models of nucleus-nucleus interactions implemented in CORSIKA // Phys. Atom. Nucl. 2021. V. 84. No. 6. P. 1011–1016.

Спасибо за внимание!

Дополнительные слайды

Модели адронных взаимодействий высоких энергий в CORSIKA v.77402

Model (version)	Features	
DPMJET-III (2017.1)	Dual Parton Model with soft chains and multiple minijets	
EPOS-LHC (v3400)	Improved NEXUS features. LHC data is taken into account to constrain model parameters	
NEXUS (3.97)	Combines features of the former VENUS and QGSJET	
QGSJET-01d	Pomeron parameterization for the elastic hadron-nucleon scattering amplitude	
QGSJET-II-04	Includes Pomeron loop and the cross-section is tuned to LHC data	
SIBYLL (2.3d)	Based on the QCD mini-jet model	
VENUS (4.12)	Developed to simulate ultra- relativistic heavy ion collisions	

Гипотеза об образовании кварк-глюонной материи с большим угловым моментом

При нецентральных столкновениях ядер с большой энергией возможно формирование сгустка кваркглюонной материи (СКГМ) с высокой поляризацией (большим значением полного углового момента).

Большой угловой момент приводит к появлению центробежного барьера, величина которого обратно пропорциональна массе частицы:

 $\zeta = \frac{b}{R}$ $r_0 = (1.25 \pm 0.05) \, \phi_M$ $\sqrt{S_{NN}} = 2m_N \cdot (E_N + m_N)$

Создаются условия для образования и вылета с поверхности СКГМ тяжелых частиц: т-лептонов, W-, Z-бозонов и b- и даже tкварков.

РҮТНІА как генератор столкновений тяжелых ионов

Средние доли энергии, уносимые ядрами-осколками (слева) и вторичными нуклонами (справа) во взаимодействиях первичного ядра с массовым числом A с энергией $E_0 = 10^{18}$ эB с ядром азота (A-N).

Создание интерфейса между генератором PYTHIA и программой CORSIKA

Для расчета средней длины пробега вторичных ядер в атмосфере используется формула

 $\lambda = h_0 - h(T + T_0),$ $T = rac{m_{air}}{\sigma(E) \cdot N_A},$ где h_0 – высота, на которой образовалось ядро, m_{air} – молярная

масса воздуха в г/моль, Е – энергия ядра. Связь между толщиной атмосферы и высотой задается параметризацией Линсли.

Моделирование ШАЛ с условием образования t-кварков в ядро-ядерных столкновениях

