Поиск аномальных вершин на основе процессов рождения пар электрослабых нейтральных бозонов в данных *pp*-столкновений с энергией 13 ТэВ в эксперименте ATLAS

Артур Семушин

нияу мифи

29.06.2022

Научный руководитель: к.ф.-м.н. Солдатов Е.Ю.

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

29.06.2022 1/41

Мотивация: аномальные вершины и эффективная теория поля

Аномальные вершины — косвенные проявления физики вне СМ.

Эффективная теория поля — модельнонезависимый подход для косвенного поиска новой физики. Параметризация лагранжиана операторами высших размерностей:

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \ldots = \mathcal{L}_{\mathsf{SM}} + \sum_{d>4} \sum_i \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}.$$
 (1)

Л — энергетический масштаб новой физики,

 $f_i^{(d)}/\Lambda^{d-4}$ — коэффициент Вильсона перед *i*-м оператором размерности *d*.

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

 □
 •
 ■
 •
 ■
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Мотивация: электрослабое рождения Z-бозона с фотоном

Сигнальный процесс: $pp \rightarrow \nu \bar{\nu} \gamma jj$.

Сигнатура: фотон с большой поперечной энергией $E_{\rm T}^{\gamma}$, большой потерянный поперечный импульс $E_{\rm T}^{\rm miss}$, 2 (или более) струи.

Данный процесс обладает высокой чувствительностью к аномальным четверным бозонным вершинам. Модель для исследования аномальных четверных бозонных вершин:

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_i rac{f_i}{\Lambda^4} \mathcal{O}_i$$

Бозонные операторы нечетных размерностей запрещены.

Операторы размерности 8 позволяют исследовать аномальные четверные вершины без вклада тройных.

$$\begin{split} \mathcal{O}_{\mathsf{T0}} &= \mathsf{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right]\mathsf{Tr}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]\\ \mathcal{O}_{\mathsf{M0}} &= \mathsf{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right]\left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right] \end{split}$$

Рассматриваемые в работе коэффициенты: f_{T0}/Λ^4 , f_{T5}/Λ^4 , f_{T8}/Λ^4 , f_{T9}/Λ^4 , f_{M0}/Λ^4 , f_{M1}/Λ^4 , f_{M2}/Λ^4 .

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

Цель: разработка методов и осуществление косвенного поиска новой физики на основе процесса рождения *Z*-бозона с фотоном в формализме эффективной теории поля.

Задачи:

• разработка методики и постановка одномерных пределов на коэффициенты Вильсона с использованием данных второго сеанса работы эксперимента ATLAS (*pp*-столкновения, $\sqrt{s} = 13$ ТэВ, 139 фб⁻¹);

• исследование способов повышения чувствительности и уточнения пределов на коэффициенты Вильсона.

Метод декомпозиции

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + rac{f}{\Lambda^4} \mathcal{O}$$

$$\mathcal{A}=\mathcal{A}_{\mathsf{SM}}+rac{f}{\Lambda^4}\mathcal{A}_{\mathsf{BSM}}$$

$$\left|\mathcal{A}\right|^{2}=\left|\mathcal{A}_{\mathsf{SM}}\right|^{2}+\frac{f}{\Lambda^{4}}2\mathsf{Re}\left(\mathcal{A}_{\mathsf{SM}}^{\dagger}\mathcal{A}_{\mathsf{BSM}}\right)+\frac{f^{2}}{\Lambda^{8}}\left|\mathcal{A}_{\mathsf{BSM}}\right|^{2}$$

Для моделирования отдельных слагаемых используется MADGRAPH5.

Нарушение унитарности, клиппинг и границы унитарности

Унитарность S-матрицы: $S^{\dagger}S = 1$.

При использовании эффективной теории унитарность нарушается. Проявление — неограниченный рост сечения с энергией.

Клиппинг — обрезание вкладов новой физики с энергией, большей некоторой энергии клиппинга (обрезания) E_c . Обрезаемая энергия — инвариант рассеяния бозонов $m_{Z\gamma}$.

Границы унитарности — теоретические ограничения на коэффициенты, получаемые из условия унитарности парциальных волн.

Пример: $|f_{\mathsf{T0}}/\Lambda^4| < (12/5)\pi s^{-2}$.

Оптимизация фазового пространства

 E_{T}^{γ} — одна из самых чувствительных переменных.

Процедуры клиппинга и оптимизации скоррелированы.

<i>Е</i> с, ТэВ	∞	1.7	
E_{T}^{γ} >150 ГэВ	[-0.71; 0.66]	[-2.6; 2.2]	
<i>Е</i> _T ^γ >300 ГэВ	[-0.39; 0.35]	[-1.5; 1.2]	
<i>Е</i> _T ^γ >400 ГэВ	[-0.27; 0.25]	[-1.12; 0.89]	
<i>Е</i> _T ^γ >500 ГэВ	[-0.22; 0.19]	[-0.95; 0.77]	
<i>Е</i> _T ^γ >600 ГэВ	[-0.18; 0.16]	[-0.89; 0.73]	
<i>Е</i> _T ^γ >700 ГэВ	[-0.15; 0.14]	[-0.93; 0.8]	
<i>Е</i> _т ^γ >800 ГэВ	[-0.14; 0.12]	[-1.06; 0.95]	
<i>Е</i> _T ^γ >900 ГэВ	[-0.13; 0.12]	[-1.3; 1.2]	
$E_{\rm T}^{\gamma}$ >1000 ГэВ	[-0.12; 0.11]	[-1.6; 1.5]	
$E_{\rm T}^{\gamma}$ >1100 ГэВ	[-0.12; 0.11]	_	
$E_{\rm T}^{\gamma}$ >1200 ГэВ	[-0.12; 0.11]	_	
<i>E</i> _T ^γ >1300 ГэВ	[-0.13; 0.12]	_	

Результаты:

- $E_{\rm T}^{\gamma} > 900$ ГэВ для неунитаризованных,
- $E_{\mathsf{T}}^{\dot{\gamma}} > 600$ ГэВ для унитаризованных (Т-семейство),
- $E_{\mathrm{T}}^{\gamma} > 400$ ГэВ для унитаризованных

(М-семейство),

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

< □ > < □ > < □ > < ⊇ > < ⊇ >
 29.06.2022

Результаты в полной модели

Коэф.	Наблюд., ТэВ ⁻⁴	Ожид., ТэВ ⁻⁴
f_{T0}/Λ^4	[-0.094; 0.084]	[-0.13; 0.12]
f_{T5}/Λ^4	[-0.088; 0.099]	[-0.12; 0.13]
f_{T8}/Λ^4	[-0.059; 0.059]	[-0.081; 0.080]
f_{T9}/Λ^4	[-0.13; 0.13]	[-0.17; 0.17]
$f_{\rm M0}/\Lambda^4$	[-4.6; 4.6]	[-6.2; 6.2]
f_{M1}/Λ^4	[-7.7; 7.7]	[-10; 10]
f_{M2}/Λ^4	[-1.9; 1.9]	[-2.6; 2.6]

Коэф.	<i>Е</i> с, ТэВ	Наблюд., ТэВ ⁻⁴	Ожид., ТэВ ⁻⁴
$f_{ m T0}/\Lambda^4$	1.7	[-0.87; 0.71]	[-0.89; 0.73]
f_{T5}/Λ^4	2.4	[-0.34; 0.42]	[-0.35; 0.43]
f_{T8}/Λ^4	1.7	[-0.52; 0.52]	[-0.53; 0.53]
f_{T9}/Λ^4	1.9	[-0.79; 0.79]	[-0.81; 0.81]
$f_{ m M0}/\Lambda^4$	0.7	[-160; 160]	[-150; 150]
f_{M1}/Λ^4	1.0	[-160; 150]	[-140; 140]
f_{M2}/Λ^4	1.0	[-33; 32]	[-30; 30]

Артур Семушин (НИЯУ МИФИ)

Линейная модель: методы и результаты

$$|\mathcal{A}|^2 = |\mathcal{A}_{\mathsf{SM}}|^2 + \frac{f}{\Lambda^4} 2\mathsf{Re}\,\mathcal{A}_{\mathsf{SM}}^\dagger \mathcal{A}_{\mathsf{BSM}} + \frac{f^2}{\Lambda^8} |\mathcal{A}_{\mathsf{BSM}}|^2.$$

 $f \ll 1, \Lambda \gg E_{\rm current} o$ квадратичное слагаемое может быть отброшено.

Используемые методы:

1. Теоретический предел.

$$N_{Z\gamma} = N_{Z\gamma, \mathsf{SM}} + rac{f}{\Lambda^4} N_{Z\gamma, \mathsf{int}} \geq 0.$$

2. Оптимизация по $E_{\rm T}^{\gamma}$. $E_{\rm T}^{\gamma} > 800$ ГэВ — для Т-семейства, $E_{\rm T}^{\gamma} > 400$ ГэВ — для М-семейства.

Коэф.	Наблюд., ТэВ ⁻⁴	Ожид., ТэВ ⁻⁴
f_{T0}/Λ^4	[-0.38; 0.84]	[-0.38; 1.35]
f_{T5}/Λ^4	[-0.83; 0.38]	[-1.34; 0.38]
f_{T8}/Λ^4	[-37; 82]	[-37; 133]
f_{T9}/Λ^4	[-57; 126]	[-57; 204]
$f_{\rm M0}/\Lambda^4$	[-1140; 950]	[-960; 950]
f_{M1}/Λ^4	[-3100; 3700]	[-3100; 3100]
f_{M2}/Λ^4	[-460; 560]	[-460; 470]

Использования распределения для построения функции правдоподобия

10²

04 06 08

Сравнивались пределы, для получения которых функция правдоподобия строилась двумя разными способами:

1. На основе одного бина, оптимизированного по E_{T}^{γ} .

2. На основе распределения по $E_{\rm T}^{\gamma}$.

Коэф.	1 бин	Распределение	Уточн.		
$f_{ m T0}/\Lambda^4$	[-0.134; 0.129]	[-0.125; 0.119]	7.2%		
f_{T5}/Λ^4	[-0.136; 0.141]	[-0.125; 0.132]	7.2%		
$f_{ m M0}/\Lambda^4$	[-6.81; 6.81]	[-6.04; 6.04]	11.3%		
$f_{\rm M2}/\Lambda^4$	[-2.73; 2.73]	[-2.42; 2.42]	11.4%		
Пределы указаны в ТэВ ⁻⁴ .					

1 12 14 16 Артур Семушин (НИЯУ МИФИ)

E₇ [TeV]

Поиск аномальных вершин

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ 29.06.2022

Поправки к пределам от аномальных вкладов в фоновых процессах

Классический подход: аномальные вклады учитываются только для сигнального процесса $(Z(\nu\bar{\nu})\gamma)$. Ненулевой коэффициент Вильсона будет влиять на все процессы \rightarrow поправки к пределам от фоновых процессов $(W(I\nu)\gamma)$.

Коэф.	Классич., ТэВ ⁻⁴	Поправл., ТэВ ⁻⁴	Уточн.
f_{T0}/Λ^4	[-0.125; 0.119]	[-0.124; 0.118]	0.8%
f_{T5}/Λ^4	[-0.125; 0.132]	[-0.122; 0.129]	2.3%
$f_{\rm M0}/\Lambda^4$	[-6.04; 6.04]	[-5.58; 5.57]	7.7%
f_{M2}/Λ^4	[-2.42; 2.42]	[-2.20; 2.20]	9.1%

- Поставлены пределы на 7 коэффициентов Вильсона на основе процесса электрослабого рождения *Z*-бозона с фотоном: в полной модели (неунитаризованные и унитаризованные) и в линейной модели.
- Некоторые из поставленных пределов являются наиболее точными в мире на данный момент.
- Предложены методы уточнения пределов с целью использования их в будущих подобных исследованиях; уточнение пределов составляет 7-11% и 1-9%.

BACK-UP

Артур Семушин (НИЯУ МИФ	 Лоисканом
-------------------------	-------------------------------

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Базис операторов

$$\begin{split} \mathcal{O}_{\mathsf{T0}} &= \mathsf{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \mathsf{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right] \\ \mathcal{O}_{\mathsf{T1}} &= \mathsf{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \mathsf{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{\mathsf{T2}} &= \mathsf{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \mathsf{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right] \\ \mathcal{O}_{\mathsf{T5}} &= \mathsf{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathsf{T6}} &= \mathsf{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \left[B_{\mu\beta} B^{\alpha\nu} \right], \\ \mathcal{O}_{\mathsf{T7}} &= \mathsf{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \left[B_{\beta\nu} B^{\nu\alpha} \right], \\ \mathcal{O}_{\mathsf{T8}} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathsf{T9}} &= \left[B_{\alpha\mu} B^{\mu\beta} \right] \left[B_{\beta\nu} B^{\nu\alpha} \right]. \end{split}$$

$$\begin{split} \mathcal{O}_{M0} &= \mathsf{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{M1} &= \mathsf{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{M2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{M3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{M4} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] B^{\beta\nu}, \\ \mathcal{O}_{M5} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] B^{\beta\mu} + \mathsf{h.c.}, \\ \mathcal{O}_{M7} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]. \\ \mathcal{O}_{50} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right], \\ \mathcal{O}_{51} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]. \end{split}$$

Артур Семушин (НИЯУ МИФИ)

,

,

•

<ロ> <四> <ヨ> <ヨ> 三日

Влияние операторов на вершины

Оператор	WWWW	WWZZ	$WWZ\gamma$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
$\mathcal{O}_{T0}, \mathcal{O}_{T1}, \mathcal{O}_{T2}$	0	0	0	0	0	0	0	0	0
<mark>О_{Т5}</mark> , О _{Т6} , О _{Т7}		0	0	0	0	0	0	0	0
$\mathcal{O}_{T8}, \mathcal{O}_{T9}$					0	0	0	0	0
$\mathcal{O}_{M0}, \mathcal{O}_{M1}, \mathcal{O}_{M7}$	0	0	0	0	0	0	0		
$\mathcal{O}_{M2}, \mathcal{O}_{M3}, \mathcal{O}_{M4}, \mathcal{O}_{M5}$		0	0	0	0	0	0		
\mathcal{O}_{S0} , \mathcal{O}_{S1}	0	0			0				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

15/41

3

Параметризация амплитуды

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{f}{\Lambda^{d-4}}\mathcal{O},\tag{2}$$

$$|\mathcal{A}|^{2} = |\mathcal{A}_{\mathsf{SM}}|^{2} + \frac{f}{\Lambda^{d-4}} 2\mathsf{Re}\,\mathcal{A}_{\mathsf{SM}}^{\dagger}\mathcal{A}_{\mathsf{BSM}} + \frac{f^{2}}{\Lambda^{2(d-4)}}|\mathcal{A}_{\mathsf{BSM}}|^{2}$$
(3)

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{f_1}{\Lambda^{d-4}} \mathcal{O}_1 + \frac{f_2}{\Lambda^{d-4}} \mathcal{O}_2,$$

$$|\mathcal{A}|^2 = |\mathcal{A}_{SM}|^2 + \frac{f_1}{\Lambda^{d-4}} 2\text{Re}\,\mathcal{A}_{SM}^{\dagger}\mathcal{A}_{BSM,1} + \frac{f_2}{\Lambda^{d-4}} 2\text{Re}\,\mathcal{A}_{SM}^{\dagger}\mathcal{A}_{BSM,2} + \frac{f_1^2}{\Lambda^{2(d-4)}} |\mathcal{A}_{BSM,1}|^2 + \frac{f_2^2}{\Lambda^{2(d-4)}} |\mathcal{A}_{BSM,2}|^2 + \frac{f_1f_2}{\Lambda^{2(d-4)}} 2\text{Re}\,\mathcal{A}_{BSM,1}^{\dagger}\mathcal{A}_{BSM,2}$$
(4)
(4)

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

29.06.2022

(日) (四) (日) (日) (日)

Сигнальный регион и фоны

$$\begin{array}{ll} & \textit{N}_{\gamma} = \texttt{1}, \ \textit{N}_{\mathsf{leptons}} = \texttt{0}, \ \textit{N}_{\mathsf{jets}} \geq \texttt{2} \\ & \textit{E}_{\mathsf{T}}^{\gamma} > \texttt{150} \ \texttt{\Gamma} \texttt{>} \texttt{B} & \textit{E}_{\mathsf{T}}^{\mathsf{miss}} > \texttt{120} \ \texttt{\Gamma} \texttt{>} \texttt{B} \\ & \textit{E}_{\mathsf{T}}^{\mathsf{miss}} \text{-} \mathsf{significance} > \texttt{12} & |\Delta \varphi(\vec{p}_{\mathsf{T}}^{\mathsf{miss}}, j)| > \texttt{0.3} \\ & |\Delta \varphi(\vec{p}_{\mathsf{T}}^{\mathsf{miss}}, \gamma)| > \texttt{0.3} & \textit{p}_{\mathsf{T}}^{\mathsf{SoftTerm}} < \texttt{16} \ \texttt{\Gamma} \texttt{>} \texttt{B} \\ & \textit{m}_{jj} > \texttt{300} \ \texttt{\Gamma} \texttt{>} \texttt{B} & \zeta_{\gamma} < \texttt{0.6} \end{array}$$

Процесс	Вклад
$Z\gamma$ EWK	12%
$Z\gamma$ QCD	37%
$W\gamma$ QCD	25%
$W\gamma~{\sf EWK}$	6%
$W(e u)$, t, t $ar{t}$	6%
$tar{t}\gamma$	6%
$\gamma+jet$	5%
Zj, jj	2%
$Z(I\overline{I})\gamma$	1%

3

Статистический метод

 μ — вектор параметров интереса, θ — вектор несущественных параметров, реализующих неопределенности.

Тестовая статистика:
$$t_{oldsymbol{\mu}}=-2\lnrac{L(oldsymbol{\mu},\hat{oldsymbol{ heta}}(oldsymbol{\mu}))}{L(\hat{oldsymbol{\mu}},\hat{oldsymbol{ heta}})}$$

Метод CL_{s+b} : доверительный интервал на уровне доверия 95% — область в пространстве параметров интереса μ , в которой

$$p_{\boldsymbol{\mu}} = \int\limits_{t^{obs}_{\boldsymbol{\mu}}}^{\infty} f(t_{\boldsymbol{\mu}}|\boldsymbol{\mu}) \, \mathrm{d}t_{\boldsymbol{\mu}} > 0.05.$$

В пределе большой выборки распределение тестовой статистики $f(t_{\mu}|\mu)$ сходится к распределению $\chi^2_{\dim(\mu)}$. Нахождение одномерных пределов (95% CL) сводится к условию $t_{\mu}^{obs} = 3.84$.

Применимость асимптотического распределения

Отбор	Ожидание СМ	Данные	Асимпт., ТэВ ⁻⁴	Псевдоэксп., ТэВ ⁻⁴
$E_{ m T}^{\gamma} > 150$ ГэВ	375	356	[-0.880; 0.794]	[-0.873; 0.784]
$E_{ m T}^{\gamma}>$ 400 ГэВ	36.8	41	[-0.372; 0.315]	[-0.374; 0.313]
$E_{ m T}^{\gamma} >$ 600 ГэВ	8.12	8	[-0.203; 0.167]	[-0.205; 0.167]
$E_{ m T}^{\gamma}>$ 800 ГэВ	1.89	1	[-0.127; 0.102]	[-0.125; 0.102]
$E_{ m T}^{\gamma} >$ 900 ГэВ	0.919	0	[-0.105; 0.084]	[-0.103; 0.081]

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥

Функция правдоподобия

$$L(\boldsymbol{\mu}, \boldsymbol{\theta}) = \prod_{i} \frac{(N_{\mathsf{pred}}^{i}(\boldsymbol{\mu}, \boldsymbol{\theta}))^{N_{\mathsf{data}}^{i}}}{N_{\mathsf{data}}^{i}!} e^{-N_{\mathsf{pred}}^{i}(\boldsymbol{\mu}, \boldsymbol{\theta})} \times \prod_{j} \frac{1}{\sqrt{2\pi}} e^{-\theta_{j}^{2}/2}, \tag{6}$$

$$N_{\text{pred}}(\boldsymbol{\mu}, \boldsymbol{\theta}) = \left(N_0(1 + \sigma_0 \theta_0) + \frac{f}{\Lambda^4} N_1(1 + \sigma_1 \theta_1) + \frac{f^2}{\Lambda^8} N_2(1 + \sigma_2 \theta_2)\right) \times (1 + \sigma_{\text{syst}} \theta_{\text{syst}}) \quad (7)$$

$$N_{\text{pred}}(\mu, \theta) = \left(N_0(1 + \sigma_0\theta_0) + \frac{f_1}{\Lambda^4}N_{1,1}(1 + \sigma_{1,1}\theta_{1,1}) + \frac{f_2}{\Lambda^4}N_{1,2}(1 + \sigma_{1,2}\theta_{1,2}) + \frac{f_1^2}{\Lambda^8}N_{2,1}(1 + \sigma_{2,1}\theta_{2,1}) + \frac{f_2^2}{\Lambda^8}N_{2,2}(1 + \sigma_{2,2}\theta_{2,2}) + \frac{f_1f_2}{\Lambda^8}N_{12}(1 + \sigma_{12}\theta_{12})\right) \times \\ \times \left(1 + \sigma_{\text{syst}}\theta_{\text{syst}}\right) \quad (8)$$

Артур Семушин (НИЯУ МИФИ)

29.06.2022

Метод декомпозиции

29.06.2022

ъ

< /⊐

Клиппинг

29.06.2022

Корреляция клиппинга и оптимизации

29.06.2022

ヘロト 人間ト 人口ト 人口ト

23/41

э

NLO КХД поправки к сигналу

э

Оптимизация (полная модель, $f_{\rm T0}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1.7	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-0.71; 0.66]	[-0.75; 0.7]	[-0.83; 0.77]	[-1.08; 0.99]	[-1.9; 1.7]	[-2.6; 2.2]	[-7.8; 6.4]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-0.39; 0.35]	[-0.41; 0.37]	[-0.46; 0.41]	[-0.6; 0.52]	[-1.1; 0.91]	[-1.5; 1.2]	[-5.2; 4.1]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-0.27; 0.25]	[-0.29; 0.26]	[-0.33; 0.29]	[-0.43; 0.37]	[-0.81; 0.66]	[-1.12; 0.89]	[-4.6; 3.7]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-0.22; 0.19]	[-0.23; 0.2]	[-0.26; 0.22]	[-0.34; 0.29]	[-0.67; 0.54]	[-0.95; 0.77]	[-4.8; 4.1]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-0.18; 0.16]	[-0.19; 0.17]	[-0.21; 0.19]	[-0.29; 0.24]	[-0.59; 0.49]	[-0.89; 0.73]	[-5.4; 5]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-0.15; 0.14]	[-0.16; 0.15]	[-0.19; 0.16]	[-0.25; 0.22]	[-0.58; 0.49]	[-0.93; 0.8]	[-5.9; 5.6]
<i>Е</i> <u></u> ^7>800 ГэВ	[-0.14; 0.12]	[-0.15; 0.13]	[-0.17; 0.15]	[-0.24; 0.21]	[-0.6; 0.53]	[-1.06; 0.95]	[-6.5; 6.3]
<i>Е</i> ^γ _T >900 ГэВ	[-0.13; 0.12]	[-0.14; 0.12]	[-0.16; 0.14]	[-0.23; 0.2]	[-0.69; 0.62]	[-1.3; 1.2]	[-8.3; 8.2]
E_{T}^{γ} >1000 ГэВ	[-0.12; 0.11]	[-0.13; 0.12]	[-0.15; 0.14]	[-0.24; 0.22]	[-0.88; 0.82]	[-1.6; 1.5]	[-15; 15]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-0.12; 0.11]	[-0.13; 0.12]	[-0.16; 0.15]	[-0.25; 0.24]	[-1.2; 1.1]	—	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-0.12; 0.11]	[-0.13; 0.12]	[-0.16; 0.15]	[-0.28; 0.27]	—	—	—
E_{T}^{γ} >1300 ГэВ	[-0.13; 0.12]	[-0.14; 0.14]	[-0.18; 0.17]	[-0.35; 0.34]	—	—	_
Гран. унит.	[-0; 0]	[-0.012; 0.012]	[-0.029; 0.029]	[-0.093; 0.093]	[-0.47; 0.47]	[-0.9; 0.9]	[-7.5; 7.5]

29.06.2022

Оптимизация (полная модель, $f_{{ m T5}}/{\Lambda^4})$

<i>Е</i> с, ТэВ	∞	5	4	3	2.4	2	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-0.69; 0.74]	[-0.73; 0.78]	[-0.8; 0.87]	[-1; 1.1]	[-1.3; 1.5]	[-1.7; 2]	[-6.4; 7.3]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-0.37; 0.41]	[-0.39; 0.43]	[-0.43; 0.48]	[-0.54; 0.62]	[-0.71; 0.84]	[-0.92; 1.12]	[-4; 5]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-0.26; 0.29]	[-0.27; 0.3]	[-0.3; 0.34]	[-0.38; 0.45]	[-0.5; 0.61]	[-0.67; 0.83]	[-3.6; 4.4]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-0.2; 0.23]	[-0.21; 0.24]	[-0.23; 0.27]	[-0.3; 0.36]	[-0.41; 0.49]	[-0.55; 0.69]	[-4; 4.5]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-0.17; 0.19]	[-0.17; 0.2]	[-0.19; 0.22]	[-0.25; 0.3]	[-0.35; 0.43]	[-0.5; 0.61]	[-4.6; 4.9]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-0.14; 0.16]	[-0.15; 0.17]	[-0.17; 0.19]	[-0.23; 0.27]	[-0.33; 0.39]	[-0.5; 0.59]	[-5.3; 5.5]
<i>Е</i> <u>^</u> >800 ГэВ	[-0.13; 0.14]	[-0.14; 0.15]	[-0.16; 0.18]	[-0.22; 0.25]	[-0.33; 0.38]	[-0.53; 0.61]	[-6.2; 6.4]
<i>Е</i> ^γ _T >900 ГэВ	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.16]	[-0.21; 0.24]	[-0.35; 0.39]	[-0.63; 0.7]	[-6.7; 6.8]
E_{T}^{γ} >1000 ГэВ	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.16]	[-0.23; 0.25]	[-0.4; 0.44]	[-0.81; 0.87]	[-8.4; 8.4]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.16]	[-0.25; 0.27]	[-0.5; 0.54]	[-1; 1.1]	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-0.12; 0.12]	[-0.13; 0.14]	[-0.16; 0.17]	[-0.28; 0.29]	—	—	—
E_{T}^{γ} >1300 ГэВ	[-0.13; 0.13]	[-0.14; 0.15]	[-0.18; 0.18]	[-0.35; 0.37]	—	—	—
Гран. унит.	[-0; 0]	[-0.023; 0.023]	[-0.057; 0.057]	[-0.18; 0.18]	[-0.44; 0.44]	[-0.91; 0.91]	[-15; 15]

Оптимизация (полная модель, $f_{\rm T8}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1.7	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-0.45; 0.45]	[-0.47; 0.47]	[-0.52; 0.52]	[-0.67; 0.67]	[-1.2; 1.2]	[-1.5; 1.5]	[-4.5; 4.5]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-0.24; 0.24]	[-0.25; 0.25]	[-0.28; 0.28]	[-0.36; 0.36]	[-0.64; 0.64]	[-0.86; 0.86]	[-2.9; 2.8]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-0.17; 0.17]	[-0.18; 0.18]	[-0.2; 0.2]	[-0.26; 0.26]	[-0.47; 0.47]	[-0.64; 0.64]	[-2.6; 2.6]
<i>Е</i> ^γ _T >500 ГэВ	[-0.13; 0.13]	[-0.14; 0.14]	[-0.16; 0.16]	[-0.21; 0.21]	[-0.39; 0.39]	[-0.55; 0.55]	[-2.8; 2.8]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-0.11; 0.11]	[-0.12; 0.12]	[-0.13; 0.13]	[-0.17; 0.17]	[-0.35; 0.35]	[-0.53; 0.53]	[-3.5; 3.5]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-0.096; 0.096]	[-0.1; 0.1]	[-0.12; 0.12]	[-0.16; 0.16]	[-0.34; 0.34]	[-0.57; 0.56]	[-4; 4]
$E_{\mathbf{T}}^{\gamma}$ >800 ГэВ	[-0.087; 0.087]	[-0.092; 0.092]	[-0.11; 0.1]	[-0.15; 0.15]	[-0.37; 0.37]	[-0.67; 0.67]	[-5.7; 5.7]
<i>Е</i> ^γ _T >900 ГэВ	[-0.081; 0.08]	[-0.086; 0.086]	[-0.099; 0.099]	[-0.14; 0.14]	[-0.44; 0.44]	[-0.84; 0.84]	[-6.6; 6.6]
E_{T}^{γ} >1000 ГэВ	[-0.079; 0.079]	[-0.084; 0.084]	[-0.099; 0.099]	[-0.15; 0.15]	[-0.58; 0.58]	[-1.1; 1.1]	[-8.8; 8.8]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-0.078; 0.078]	[-0.085; 0.085]	[-0.1; 0.1]	[-0.16; 0.16]	[-0.76; 0.76]	-	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-0.078; 0.078]	[-0.085; 0.085]	[-0.1; 0.1]	[-0.18; 0.18]	—	—	—
E_{T}^{γ} >1300 ГэВ	[-0.084; 0.084]	[-0.092; 0.092]	[-0.12; 0.12]	[-0.23; 0.23]	—	_	_
Гран. унит.	[-0; 0]	[-0.008; 0.008]	[-0.018; 0.018]	[-0.058; 0.058]	[-0.29; 0.29]	[-0.56; 0.56]	[-4.7; 4.7]

29.06.2022

Оптимизация (полная модель, $f_{\rm T9}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1.9	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-0.96; 0.96]	[-1; 1]	[-1.1; 1.1]	[-1.4; 1.4]	[-2.4; 2.4]	[-2.6; 2.6]	[-9.3; 9.3]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-0.52; 0.52]	[-0.54; 0.53]	[-0.6; 0.59]	[-0.77; 0.77]	[-1.3; 1.3]	[-1.5; 1.5]	[-5.8; 5.8]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-0.37; 0.37]	[-0.38; 0.38]	[-0.42; 0.42]	[-0.54; 0.54]	[-0.98; 0.97]	[-1.1; 1.1]	[-5.2; 5.1]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-0.29; 0.29]	[-0.3; 0.3]	[-0.33; 0.33]	[-0.43; 0.43]	[-0.81; 0.81]	[-0.89; 0.89]	[-5.6; 5.6]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-0.24; 0.24]	[-0.25; 0.25]	[-0.28; 0.28]	[-0.37; 0.37]	[-0.73; 0.73]	[-0.81; 0.81]	[-6.5; 6.5]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-0.21; 0.21]	[-0.22; 0.22]	[-0.24; 0.24]	[-0.33; 0.33]	[-0.71; 0.71]	[-0.81; 0.81]	[-7.4; 7.3]
$E_{\mathbf{T}}^{\gamma}$ >800 ГэВ	[-0.19; 0.19]	[-0.2; 0.2]	[-0.22; 0.22]	[-0.31; 0.31]	[-0.77; 0.77]	[-0.9; 0.9]	[-7.9; 7.9]
<i>Е</i> ^γ _T >900 ГэВ	[-0.17; 0.17]	[-0.18; 0.18]	[-0.21; 0.21]	[-0.3; 0.3]	[-0.91; 0.91]	[-1.1; 1.1]	[-8.9; 8.9]
E_{T}^{γ} >1000 ГэВ	[-0.17; 0.17]	[-0.18; 0.18]	[-0.21; 0.21]	[-0.32; 0.32]	[-1.2; 1.2]	[-1.4; 1.4]	[-12; 12]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-0.17; 0.17]	[-0.18; 0.18]	[-0.21; 0.21]	[-0.35; 0.35]	[-1,5; 1.5]	—	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-0.17; 0.17]	[-0.18; 0.18]	[-0.22; 0.22]	[-0.39; 0.39]	—	—	—
$E_{T}^{\dot{\gamma}} > 1300 \ \Gamma$ эВ	[-0.18; 0.18]	[-0.2; 0.2]	[-0.25; 0.25]	[-0.5; 0.5]	—	—	_
Гран. унит.	[-0; 0]	[-0.017; 0.017]	[-0.042; 0.042]	[-0.13; 0.13]	[-0.67; 0.67]	[-0.83; 0.83]	[-11; 11]

Оптимизация (полная модель, $f_{\rm M0}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1	0.7
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-28; 29]	[-29; 29]	[-30; 30]	[-34; 35]	[-48; 49]	[-130; 130]	[-230; 240]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-15; 16]	[-16; 16]	[-16; 17]	[-19; 19]	[-27; 28]	[-81; 83]	[-170; 170]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-11; 11]	[-11; 11]	[-12; 12]	[-14; 14]	[-20; 20]	[-70; 71]	[-150; 150]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-9; 9]	[-9.1; 9.2]	[-9.6; 9.7]	[-11; 11]	[-17; 18]	[-72; 72]	[-150; 150]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-7.7; 7.7]	[-7.8; 7.9]	[-8.3; 8.3]	[-9.8; 9.9]	[-16; 16]	[-78; 77]	[-150; 150]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-6.9; 6.9]	[-7; 7.1]	[-7.5; 7.5]	[-9.1; 9.1]	[-17; 17]	[-84; 83]	[-180; 180]
$E_{\mathbf{T}}^{\gamma}$ >800 ГэВ	[-6.5; 6.5]	[-6.6; 6.6]	[-7.1; 7.1]	[-8.9; 8.9]	[-18; 19]	[-92; 92]	[-180; 180]
$E_{\mathbf{T}}^{\gamma}$ >900 ГэВ	[-6.2; 6.2]	[-6.4; 6.4]	[-7; 7]	[-9.1; 9.1]	[-23; 23]	[-100; 100]	[-250; 250]
$E_{\mathbf{T}}^{\gamma}$ >1000 ГэВ	[-6.4; 6.4]	[-6.6; 6.6]	[-7.3; 7.2]	[-10; 10]	[-31; 31]	[-140; 140]	—
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-6.6; 6.6]	[-6.9; 6.9]	[-7.7; 7.7]	[-11; 11]	[-38; 38]	—	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-6.8; 6.8]	[-7.2; 7.2]	[-8.2; 8.2]	[-13; 13]	_	—	—
$E_{T}^{\gamma} > 1300 \ \Gamma$ эВ	[-7.7; 7.7]	[-8.2; 8.2]	[-9.6; 9.6]	[-18; 18]	_	_	_
Гран. унит.	[-0; 0]	[-0.066; 0.066]	[-0.16; 0.16]	[-0.51; 0.51]	[-2.6; 2.6]	[-41; 41]	[-170; 170]

< □ > < ⑦ > < ≥ > < ≥ > ≥
29.06.2022

Оптимизация (полная модель, $f_{\rm M1}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-52; 52]	[-53; 52]	[-55; 55]	[-64; 63]	[-93; 91]	[-270; 260]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-28; 28]	[-29; 28]	[-30; 30]	[-35; 35]	[-52; 51]	[-170; 160]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-20; 20]	[-20; 20]	[-21; 21]	[-25; 25]	[-38; 37]	[-140; 140]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-16; 16]	[-16; 16]	[-17; 17]	[-20; 20]	[-32; 31]	[-150; 150]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-13; 13]	[-14; 14]	[-14; 14]	[-17; 17]	[-29; 29]	[-150; 150]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-12; 12]	[-12; 12]	[-13; 13]	[-16; 16]	[-28; 28]	[-170; 170]
$E_{\mathbf{T}}^{\gamma}$ >800 ГэВ	[-11; 11]	[-11; 11]	[-12; 12]	[-15; 15]	[-31; 30]	[-190; 190]
<i>Е</i> ^γ _T >900 ГэВ	[-10; 10]	[-11; 11]	[-12; 12]	[-15; 15]	[-36; 36]	[-220; 220]
$E_{\rm T}^{\gamma}$ >1000 ГэВ	[-10; 10]	[-11; 11]	[-12; 12]	[-16; 16]	[-47; 47]	[-290; 290]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-11; 11]	[-11; 11]	[-12; 12]	[-18; 18]	[-59; 59]	_
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-11; 11]	[-11; 11]	[-13; 13]	[-20; 20]	—	—
$E_{\rm T}^{\gamma}$ >1300 ГэВ	[-12; 12]	[-13; 13]	[-15; 15]	[-26; 26]	_	_
Гран. унит.	[-0; 0]	[-0.26; 0.26]	[-0.64; 0.64]	[-2; 2]	[-10; 10]	[-160; 160]

29.06.2022

Оптимизация (полная модель, $f_{\rm M2}/\Lambda^4)$

<i>Е</i> с, ТэВ	∞	5	4	3	2	1
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-12; 12]	[0; 11.745]	[-12; 12]	[-14; 14]	[-20; 20]	[-55; 53]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-6.4; 6.3]	[-6.5; 6.4]	[-6.9; 6.8]	[-7.9; 7.8]	[-12; 11]	[-36; 35]
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	[-4.6; 4.6]	[-4.7; 4.6]	[-4.9; 4.8]	[-5.7; 5.6]	[-8.6; 8.4]	[-30; 30]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-3.7; 3.7]	[-3.8; 3.7]	[-4; 4]	[-4.7; 4.7]	[-7.4; 7.3]	[-30; 30]
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	[-3.2; 3.1]	[-3.2; 3.2]	[-3.4; 3.4]	[-4.1; 4.1]	[-6.9; 6.9]	[-31; 31]
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	[-2.8; 2.8]	[-2.9; 2.9]	[-3.1; 3.1]	[-3.8; 3.8]	[-7; 7]	[-34; 34]
$E_{\mathbf{T}}^{\gamma}$ >800 ГэВ	[-2.7; 2.7]	[-2.7; 2.7]	[-2.9; 2.9]	[-3.7; 3.7]	[-7.7; 7.7]	[-36; 36]
<i>Е</i> ^γ _T >900 ГэВ	[-2.6; 2.6]	[-2.6; 2.6]	[-2.9; 2.9]	[-3.8; 3.8]	[-9.3; 9.3]	[-41; 41]
E_{T}^{γ} >1000 ГэВ	[-2.6; 2.6]	[-2.7; 2.7]	[-3; 3]	[-4.2; 4.2]	[-12; 12]	[-56; 56]
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-2.7; 2.7]	[-2.8; 2.8]	[-3.2; 3.2]	[-4.7; 4.7]	[-15; 15]	—
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	[-2.8; 2.8]	[-2.9; 2.9]	[-3.4; 3.4]	[-5.6; 5.6]	—	_
$E_{T}^{\gamma} > 1300 \ \Gamma$ эВ	[-3.2; 3.2]	[-3.4; 3.4]	[-4; 4]	[-7.4; 7.4]	_	_
Гран. унит.	[-0; 0]	[-0.057; 0.057]	[-0.14; 0.14]	[-0.44; 0.44]	[-2.2; 2.2]	[-36; 36]

< □ > < □ > < ≥ > < ≥ > < ≥ > ≥
29.06.2022

Графические пределы (Т-семейство)

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

29.06.2022

32/41

3

Графические пределы (М-семейство)

Унитарность парциальных волн

$$S^{\dagger}S = 1 \quad \rightarrow \quad \sigma_{\text{tot}} = \frac{1}{s} \text{Im} \, \mathcal{M}_{\text{el}}(\theta = 0)$$
 (9)

$$\mathcal{M}(V_{1,\lambda_1}V_{2,\lambda_2} \to V_{3,\lambda_3}V_{4,\lambda_4}) = 16\pi \sqrt{1 + \delta_{V_{1,\lambda_1}}^{V_{2,\lambda_2}}} \sqrt{1 + \delta_{V_{3,\lambda_3}}^{V_{4,\lambda_4}}} e^{iM\varphi} \times \sum_{J} (2J+1)d_{\lambda\mu}^J(\theta) T^J(V_{1,\lambda_1}V_{2,\lambda_2} \to V_{3,\lambda_3}V_{4,\lambda_4}) \quad (10)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{|\mathcal{M}|^2}{64\pi^2 s} \tag{11}$$

$$\sigma_{\rm el} \le \sigma_{\rm tot} \tag{12}$$

$$|T^{J}(V_{1,\lambda_{1}}V_{2,\lambda_{2}} \to V_{1,\lambda_{1}}V_{1,\lambda_{1}})| \leq 1$$
(13)

Артур Семушин (НИЯУ МИФИ)

Поиск аномальных вершин

29.06.2022 34 / 41

3

イロト 不得下 イヨト イヨト

Границы унитарности

Коэффициент	Граница унитарности
$ f_{T0}/\Lambda^4 $	$(12/5)\pi s^{-2}$
$ f_{{ m T}5}/\Lambda^4 $	$(8/\sqrt{3})\pi s^{-2}$
$ f_{T8}/\Lambda^4 $	$(3/2)\pi s^{-2}$
$ f_{\rm T9}/\Lambda^4 $	$(24/7)\pi s^{-2}$
$ f_{\rm M0}/\Lambda^4 $	$(32/\sqrt{6})\pi s^{-2}$
$ f_{M1}/\Lambda^4 $	$(128/\sqrt{6})\pi s^{-2}$
$ f_{\rm M2}/\Lambda^4 $	$(16/\sqrt{2})\pi s^{-2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 29.06.2022

Теоретический предел (линейная модель)

Коэф.	f⊤o/^⁴	^ƒ т₅∕∧⁴	f ⊤ 8/Λ ⁴	^ƒ т9 / ^⁴	f _{M0} /∧ ⁴	f_{M1}/Λ^4	f _{M2} /∧ ⁴
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	-13.6, 0.8%	13.6, 0.8%	-1550, 5.5%	-2100, 4.6%	2300, 2.7%	-7520, 3.1%	-1150, 2.4%
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	-4.22, 1.3%	4.22, 1.3%	-481, 5.8%	-631, 4.8%	1160, 4.4%	-3660, 4.9%	-568, 3.9%
$E_{\mathbf{T}}^{\gamma}$ >400 ГэВ	-2.28, 1.9%	2.27, 1.8%	-254, 6.3%	-335, 5.3%	947, 6.8%	-3050, 7.7%	-464, 6%
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	-1.32, 2.7%	1.32, 2.7%	-142, 6.9%	-193, 6%	810, 10.5%	-2700, 12.3%	-416, 9.7%
$E_{\mathbf{T}}^{\gamma}$ >600 ГэВ	-0.834, 3.6%	0.826, 3.6%	-91.9, 8%	-127, 7.2%	703, 15.2%	-3050, 23.1%	-350, 13.5%
$E_{\mathbf{T}}^{\gamma}$ >700 ГэВ	-0.55, 5.1%	0.545, 5.1%	-59.1, 9.4%	-81.6, 8.5%	737, 25.9%	-2270, 28.2%	-381, 23.8%
<i>Е</i> ^γ _T >800 ГэВ	-0.384, 7.1%	0.382, 7.1%	-37.4, 10.8%	-57.4, 10.6%	1070, 57.3%	-3320, 62.9%	-416, 39.1%
$E_{\mathbf{T}}^{\gamma} > 900 \ \Gamma$ эВ	-0.266, 9.5%	0.267, 9.5%	-24.4, 13%	-38.7, 13%	-4790, 395.9%	-6050, 184.4%	-318, 47.7%
E_{T}^{γ} >1000 ГэВ	-0.215, 11.9%	0.214, 11.9%	-18.9, 15.5%	-30.1, 15.6%	-971, 108.9%	2390, 100%	-366, 73.3%
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	-0.169, 16.9%	0.165, 16.9%	-13.7, 20%	-21.8, 20%	-1310, 205%	1030, 63.3%	-2160, 595.3%
$E_{\mathbf{T}}^{\gamma}$ >1200 ГэВ	-0.123, 24.9%	0.123, 24.9%	-10.1, 27.8%	-15.6, 27.7%	-3570, 840.9%	595, 58.1%	-409, 175.4%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
29.06.2022

36/41

3

Оптимизация (линейная модель)

Коэф.	f⊤o/^⁴	^f ⊤₅ / ^⁴	^f ⊤8 / ^4	^f τ9 / Λ ⁴	f _{M0} /Λ ⁴	f _{M1} /Λ ⁴	f _{M2} /∧⁴
$E_{\mathbf{T}}^{\gamma}$ >150 ГэВ	[-14; 11]	[-11; 14]	[-1600; 1300]	[-2100; 1700]	[-1900; 2300]	[-7500; 6100]	[-1150; 930]
$E_{\mathbf{T}}^{\gamma}$ >300 ГэВ	[-4.2; 3.9]	[-3.9; 4.2]	[-480; 450]	[-630; 590]	[-1100; 1200]	[-3700; 3400]	[-570; 530]
<i>Е</i> $\frac{\gamma}{{f T}}$ >400 ГэВ	[-2.3; 2.3]	[-2.3; 2.3]	[-250; 260]	[-340; 340]	[-970; 950]	[-3100; 3100]	[-460; 480]
$E_{\mathbf{T}}^{\gamma}$ >500 ГэВ	[-1.3; 1.7]	[-1.7; 1.3]	[-140; 190]	[-190; 260]	[-1090; 810]	[-2700; 3700]	[-420; 560]
<i>Е</i> ^γ _T >600 ГэВ	[-0.83; 1.47]	[-1.46; 0.83]	[-92; 164]	[-130; 230]	-	—	—
<i>Е</i> ^γ _T >700 ГэВ	[-0.55; 1.36]	[-1.35; 0.55]	[-59; 148]	[-82; 203]	-	—	—
<i>Е</i> $\frac{\gamma}{{f T}}\!>\!800$ ГэВ	[-0.38; 1.36]	[-1.35; 0.38]	[-37; 133]	[-57; 204]	—	—	—
<i>Е</i> $\frac{\gamma}{{f T}}$ >900 ГэВ	[-0.27; 1.44]	[-1.45; 0.27]	[-24; 134]	[-39; 212]	—	—	—
$E_{\mathbf{T}}^{\gamma}$ >1000 ГэВ	[-0.22; 1.69]	[-1.68; 0.21]	[-19; 150]	[-30; 239]	_	—	—
$E_{\mathbf{T}}^{\gamma}$ >1100 ГэВ	[-0.17; 2.05]	[-2; 0.17]	[-14; 168]	[-22; 268]	_	—	—

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥
29.06.2022

Все отборы

Артур Семушин (НИЯУ МИФИ)

29.06.2022 38 / 41

Основные отборы

Image: A math a math

Ослабление отборов на фазовое пространство

Для исследования методов уточнения пределов фоны, оцениваемые с помощью данных, не учитываются. Модель базируется на исследовании ATLAS $Z(\nu\bar{\nu})\gamma jj$ Run I.

Основные отборы	Дополнительные отборы
$E_{ m T}^{ m miss} > 100{ m GeV}$	$p_{\rm T}$ -balance < 0.1
$E_{ extsf{T}}^{\gamma} > 150 extsf{GeV}$	$\zeta_{\gamma} < 0.3$
$ \Delta arphi(E_{T}^{miss},\gamma jj) >3\pi/4$	$m_{jj} > 600 { m GeV}$
$ \Delta arphi(\textit{E}_{T}^{miss},\gamma) > \pi/2$	$ \Delta y_{jj} >2.5$
$ \Delta arphi(\textit{E}_{T}^{miss},j) >1$	

Коэф.	Все отборы	Основные отборы	Уточн.				
$f_{ m T0}/\Lambda^4$	[-0.204; 0.192]	[-0.134; 0.129]	33.6%				
f_{T5}/Λ^4	[-0.202; 0.216]	[-0.136; 0.141]	33.7%				
$f_{\rm M0}/\Lambda^4$	[-7.23; 7.20]	[-6.81; 6.81]	5.6%				
$f_{\rm M2}/\Lambda^4$	[-2.90; 2.91]	[-2.73; 2.73]	6.0%				
\square							

Пределы указаны в ТэВ 🕂 🗤 🖉 🕨 🦛 🛓 🛓

Поиск аномальных вершин

Поправки к пределам: двумерные контуры

