Выпускная квалификационная работа по теме «Исследование источников фона космогенного происхождения в детекторе Darkside-20k»

Д.С.Голубков Студент Руководитель НИР, д.ф.-м.н., проф. М. Д. Скорохватов

Научный консультант, с.н.с. ОФН, НИЦ "Курчатовский институт"

И. Н. Мачулин

Введение

Наиболее убедительными экспериментальными фактами существования скрытой массы, полученными из астрономических наблюдений, являются результаты измерения скоростей слоёв галактик Существует много кандидатов гипотетических частиц скрытой массы. Одним из кандидатов является Weakly Interacting Massive Particles (WIMP).

Эксперимент Darkside-20k

Временная проекционная камера (ТРС)

Космический фон

Поток мюонов f, в помещении Лаборатории Гран-Сассо равен: f = 3.4·10⁻⁴ [c⁻¹·м⁻²]

 Мюоны космогенного происхождения и вторичные частицы вырабатывают радиоактивные изотопы в мишени детектора

- Нейтроны, образующиеся в результате взаимодействия космических мюонов, составляют значительную часть фона при поиске редких событий. Таким образом необходимо использовать имитационные исследования для проектирования защиты и прогнозирования уровней нейтронного фона в установке.
- Важным объектом исследований является образование beta-n изотопов в объёме детектора, так как нейтроны испускаемые при их распаде рассеиваются на ядрах мишени и имитируют частицы WIMP.

схема beta-n активного изотопа - ¹⁷N

Внутренняя конструкция детектора DarkSide-20k, вид спереди

Выход β – n изотопов за 10 лет в Darkside-20k

Isotope	Active UAr	Neutron Veto UAr	Outer UAr	All Ar	(β-,n)	(β-, 2n)	(β-, 3n)	Total number of neutrons	Half-life T1⁄2	Rejection (5 sec)	Rejection in ActiveLAr (5 sec)	Rejection in MiddleUAr (5 sec)	Rejection (2 sec)	Rejection in ActiveLAr (2 sec)	Rejection in MiddleUAr (2 sec)
P39	0,15	1,00	2,00	3,15	0,27			0.84	282 ms	0.00	0.00	0,00	0,01	0,00	0.00
P38	29,00	56,00	343,00	428,00	0,12			51,36	640 ms	0.23	0.02	0,03	5,89	0,40	0.77
Si37	3.00	3.00	21.00	27.00	0,17			4.59	90 ms	0.00	0.00	0.00	0.00	0.00	0.00
Si36	12.00	19.00	115.00	146.00	0.10			14.60	450 ms	0.01	0.00	0.00	0.67	0.06	0.09
AI36	0.10	0.32	2.00	2.42	0.31			0.75	90 ms	0.00	0.00	0.00	0.01	0.00	0.00
AI35	1.00	6.00	15.00	22.00	0.38			8.36	37.2 ms	0.00	0.00	0.00	0.00	0.00	0.00
AI34	4.00	3.00	28.00	35.00	0.26			9.10	56.3 ms	0.00	0.00	0.00	0.00	0.00	0.00
AI33	6.00	12.00	72.00	90.00	0.09			7.65	41.7 ms	0.00	0.00	0.00	0.00	0.00	0.00
AI32	23.00	43.00	256.00	322.00	0.01			2.25	33 ms	0.00	0.00	0.00	0.00	0.00	0.00
AI31	93.00	159.00	1153.00	1405.00	0.02			22.48	644 ms	0.10	0.01	0.01	2.61	0.17	0.30
Mg34	1.00	0.64	3.00	4.64	0.27			1.26	20 ms	0.00	0.00	0.00	0.00	0.00	0.00
Mg33	1.00	1.00	8.00	10.00	0.14			1.40	95 ms	0.00	0.00	0.00	0.00	0.00	0.00
Mg32	2,00	1.00	13.00	16.00	0.06			0.88	86 ms	0.00	0.00	0.00	0.00	0.00	0.00
Mg31	1.00	1.00	26.00	28.00	0.06			1.74	326 ms	0.00	0.00	0.00	0.02	0.00	0.00
Mg30	8.00	17.00	91.00	116.00	0.00			0.07	313 ms	0.00	0.00	0.00	0.00	0.00	0.00
Na33	0.05	0.16	1.00	1.21	0.47	0.13		0.88	8 ms	0.00	0.00	0.00	0.00	0.00	0.00
Na32	0.05	0.16	1.00	1,21	0.24	0.08		0.48	12.9 ms	0.00	0.00	0,00	0.00	0.00	0.00
Na31	0.05	0.16	1,00	1 21	0.37	0.01	0.00	0,40	17.35 ms	0,00	0,00	0,00	0,00	0,00	0,00
Na30	0.05	0.16	1.00	1.21	0.30	0.01	0,00	0.39	48.4 ms	0.00	0.00	0,00	0,00	0.00	0,00
Na29	1.00	1.00	7.00	9.00	0.26	0,01		2,33	44.1 ms	0,00	0,00	0,00	0,00	0,00	0,00
Na28	3.00	4.00	36.00	43.00	0.01			0.25	30.5 ms	0,00	0,00	0,00	0,00	0,00	0,00
Na27	13.00	30.00	188.00	231.00	0,01			0.30	301 ms	0,00	0,00	0,00	0,00	0,00	0,00
Ne29	0.05	0.16	1.00	1 21	0.28	0.04		0.44	15 ms	0,00	0,00	0,00	0,00	0,00	0,00
Ne28	0.05	0.16	1,00	1.21	0.12	0.04		0.23	20 ms	0,00	0,00	0,00	0,00	0,00	0,00
Ne27	0.05	0.32	2.00	2 37	0.02	0,04		0.05	20 ms	0,00	0,00	0,00	0,00	0,00	0,00
Ne26	0,00	2.00	15.00	17.50	0,02			0.02	107 ms	0,00	0,00	0,00	0,00	0,00	0,00
F25	0,00	0.32	2.00	2 42	0.23			0,62	80 ms	0,00	0,00	0,00	0,00	0,00	0,00
F24	2.00	5.00	19.00	26.00	0,25			1.53	284 ms	0,00	0,00	0,00	0,00	0,00	0,00
F23	6.00	12.00	86.00	104.00	0,05			5 10	2 23 6	1.08	0,00	0,00	2 74	0,00	0,01
F22	33.00	50.00	340.00	423.00	0,03			35.74	1 23 s	15 75	1 23	1.86	25.76	2.01	3.04
024	0.05	0.16	1.00	1 21	0.58			0.70	65 ms	0.00	0.00	0,00	0.01	0.00	0.00
023	0.35	1.00	6.00	7.35	0.07			0,70	97 ms	0,00	0,00	0,00	0,01	0,00	0,00
023	2.00	3 20	18.00	23.20	0,01			0.23	2 25 s	0,00	0,00	0,00	0,00	0,00	0,00
N20	0.30	1.00	5.00	6.30	0.43			2 70	136 ms	0.00	0,00	0,01	0,10	0.00	0.00
N19	0,50	2,00	8.00	10.50	0.55			5.73	271 ms	0,00	0,00	0,00	0,00	0,00	0,00
N18	5.00	6.00	72.00	83.00	0.07			5.81	619.2 ms	0.02	0,00	0,00	0,62	0.04	0.04
N17	20.00	34.00	220.00	274.00	0.95			260.30	4 173 s	113.45	8 28	14 08	186 72	13.63	23 17
C20	0.05	1.00	0.79	1.84	0.65	0.19		1.88	16.2 ms	0.00	0.00	0.00	0.00	0.00	0.00
C19	0.05	0.16	1.00	1 21	0.47	0.07		0.74	46.3 ms	0,00	0,00	0,00	0,00	0,00	0,00
C18	0,00	0.32	2,00	2.42	0.32	0,07		0,74	92 ms	0,00	0,00	0,00	0,01	0,00	0,00
C17	0.25	0.80	5.00	6.05	0.28			1 72	193 ms	0,00	0,00	0,00	0,00	0,00	0,00
C16	1 15	2.00	21.00	24 15	0.99			23.91	747 ms	0,00	0,00	0,00	3 74	0,00	0,00
B15	1,10	2,00	9.00	12.00	0.94	0.00		11.33	9 93 ms	0.00	0,01	0,02	0.00	0.00	0,01
B14	9.00	9,00	53.00	71.00	0.06	0,00		4 20	12.5 ms	0,00	0,00	0,00	0,00	0,00	0,00
B12	26.00	25.00	176.00	227.00	0,00			0.64	17.33 me	0,00	0,00	0,00	0,00	0,00	0,00
Re1/	0.10	1.00	1.00	2 10	0,00	0.01		2.09	4.35 ms	0,00	0,00	0,00	0,00	0,00	0,00
Be12	4.00	3.00	41.00	48.00	0.01	0,01		0.24	21.50 ms	0,00	0,00	0,00	0,00	0,00	0,00
1 j11	1,00	3.00	6.00	10.00	0.86	0.04	0.02	10.02	8 75 ms	0,00	0,00	0,00	0,00	0,00	0,00
1 i9	25.00	50.00	371.00	446.00	0.51	0,04	0,02	226.57	178.3 ms	0,00	0,00	0,00	0,00	0,00	0,00
Heß	8.00	18.00	101.00	127.00	0.16			20.45	119.1 ms	0,00	0,00	0,00	0,10	0.00	0,01
		10,00							220,2110	0,00	0,00	5,50	0,00	5,50	,00

Выход β – n изотопов за 10 лет в Darkside-20k

Isotope	Active UAr	Neutron Veto UAr	Outer UAr	All Ar	(β-,n)	(β-, 2n)	(β-,3n)	Total number of	Half-life T1⁄2	Rejection (5 sec)	Rejection in ActiveLAr	Rejection in MiddleUAr	Rejection	Rejection in ActiveLAr	Rejection in MiddleUAr
		1000 071		0.15				neutrons		(0.000)	(5 sec)	(5 sec)	(2000)	(2 sec)	(2 sec)
P39	0,15	1,00	2,00	3,15	0,27			0,84	282 ms	0,00	0,00	0,00	0,01	0,00	0,00
P38	29,00	56,00	343,00	428,00	0,12			51,30	640 ms	0,23	0,02	0,03	5,89	0,40	0,77
5137	3,00	3,00	21,00	27,00	0,17			4,59	90 ms	0,00	0,00	0,00	0,00	0,00	0,00
A126	0.10	19,00	2.00	2.42	0.21			0.75	400 ms	0,01	0,00	0,00	0,07	0,00	0,09
AI35	1.00	6.00	15.00	22.00	0.38			8.36	37.2 ms	0,00	0,00	0,00	0,01	0,00	0,00
AI34	4.00	3.00	28.00	35.00	0.26			9.10	56.3 ms	0.00	0.00	0.00	0,00	0.00	0.00
AI33 -	6.00	12.00	72.00	90.00	0.09			7.65	41.7 ms	0.00	0.00	0.00	0.00	0.00	0.00
AI32															0.00
AI31	1/120		•	D L IV		-	т	C	ш	юйтра		17 119	осле	sero s	0,30
Mg34	130	лопь	I	рых	од, ш	•	1	/2, 0		емтро	лы, ц	JI (п шт	0,00
Mg33												,	скуп	ч, шт	0,00
Mg32					100		•	<u> </u>		F 4	00			<u> </u>	0,00
Mg31		P38		Ζ	128		0.	640		51	.30			0.2	J 0,00
Mg30															0,00
Na33	Ç	Si36		1	146		0	450		14	. 60			0.0	1 0,00
Na32				-			0.	100		·	.00			0.0	- 0,00
Na31		191		1	105		0	611		າງ	10			01	0,00
Na20	-	4 13 1		T	405		Ο.	044		22	.40			0.1	0 0,00
Na28					_		_								- 0.00
Na27		F23		1	L04		2	.23		5.	10			1.0	8 0.00
Ne29	-												(
Ne28	•	222		/	122		1	23		35	7/			157	5 0,00
Ne27	•			-	+20		1.20 00.14				10.10				
Ne26					22		2	<u>ог</u>		0	22			0.0	0,00
F25		JZZ			23		2	.25		0.	23			0.0	5 0,00
F24															0,01
F23	 	N17		2	274		4	.17		260	0.30			113.4	5 2.04
024	-						-								0.00
023	(C16			24		Ο	717		22	01			0.2	2 0.00
O22					24		0.	141		20	.91			0.2	0.02
N20				0	007					444				100.0	0,00
N19	В	сего		2	827					41.	3.72			130.8	9 0,01
N18															0,04
N17	Оста	альны	е	2	078					343	3.02			0.0	$2^{23,17}$
C20		0.10	1.00	1.01	0.47	0.07		0.74	40.0 mm		0.00	0.00	0.01	0.0	0,00
C19 C19	0,05	0,16	1,00	1,21	0,47	0,07		0,74	46,3 ms	0,00	0,00	0,00	0,01	0,00	0,00
C10 C17	0.25	0,32	2,00	6.05	0.32			1.72	92 IIIS 193 ms	0,00	0,00	0,00	0,00	0,00	0,00
C16	1.15	2.00	21.00	24.15	0.99			23.91	747 ms	0.23	0.00	0.02	3.74	0,00	0.31
B15	1.00	2.00	9,00	12.00	0.94	0.00		11.33	9.93 ms	0.00	0.00	0.00	0.00	0.00	0.00
B14	9,00	9,00	53.00	71,00	0,06	-,		4,29	12.5 ms	0.00	0.00	0.00	0.00	0.00	0.00
B13	26,00	25,00	176,00	227,00	0,00			0,64	17,33 ms	0,00	0,00	0,00	0,00	0,00	0,00
Be14	0,10	1,00	1,00	2,10	0,98	0,01		2,09	4,35 ms	0,00	0,00	0,00	0,00	0,00	0,00
Be12	4,00	3,00	41,00	48,00	0,01			0,24	21,50 ms	0,00	0,00	0,00	0,00	0,00	0,00
Li11	1,00	3,00	6,00	10,00	0,86	0,04	0,02	10,02	8,75 ms	0,00	0,00	0,00	0,00	0,00	0,00
Li9	25,00	50,00	371,00	446,00	0,51			226,57	178,3 ms	0,00	0,00	0,00	0,10	0,01	0,01
He8	8,00	18,00	101,00	127,00	0,16			20,45	119,1 ms	0,00	0,00	0,00	0,00	0,00	0,00

Схемы распада β-п изотопов

T_{1/2}=747 ms

T_{1/2}=4.173 s

β-п переходы N17

Моделирование нейтронов от β-n распадов, имитирующих регистрацию WIMP в детекторе Darkside-20k

Критерии отбора WIMP-подобных событий:

• NclusNR = 1

(количество образованных кластеров ядерной отдачи равно единице)

• IsFV20 = 1

(область образования кластера ограничено центральным цилиндрическим объёмом массой 20 тонн)

• abs(cl_z) < 100

(координата кластера по Z меньше 100 см по модулю)

• 7.5 < cl_ene < 50

(интересующая энергетическая область поиска WIMP от 7.5 кэВ до 50 кэВ)

cl_elec < cl_nucl

(энергия электронных рассеяний меньше энергии ядерных)

• EnergyER < 50

(сумма энергии, выделяемой кластерами после захвата нейтрона, ниже порога 50 кэВ в ТРС)

late_eneVeto_Ar < 200

(сумма энергии, выделяемой кластерами после захвата нейтрона, ниже порога 200 кэВ в нейтронном вето) 12

Комбинированный отбор β-n распадов в активном объёме аргона, разыграно 100000 событий

Изотопы Критерии	C16	O22	F22	F23	N17	Al31	Si36	P38
(nclusNR == 1) && (IsFV20 == 1)	2509	3221	2655	1064	1642	534	13339	918
&& (abs(cl_z) < 100)	1468	1853	1459	597	905	294	9059	553
&& (7.5 < cl_ene < 50)	429	631	224	352	279	191	2	280
&& (cl_elec < cl_nucl)	424	631	209	351	278	184	< 1	264
&& (energyER < 50) && (late_eneVeto_Ar < 200)	3	104	28	4	2	29	< 1	2

Комбинированный отбор β-n распадов в среднем объёме аргона, разыграно 100000 событий

Изотопы Критерии	C16	022	F22	F23	N17	Al31	Si36	P38
(nclusNR == 1) && (IsFV20 == 1)	353	329	279	366	806	389	193	371
&& (abs(cl_z) < 100)	222	212	177	226	712	238	117	241
&& (7.5 < cl_ene < 50)	17	5	2	15	104	17	< 1	16
&& (cl_elec < cl_nucl)	17	5	2	15	102	17	< 1	16
&& (energyER < 50) && (late_eneVeto_Ar < 200)	2	< 1	< 1	2	< 1	2	< 1	2

Отбор нейтронов по критериям от β-n распадов во внешнем объёме аргона, разыграно 4500000 событий

Изотопы	C16	N17	022	F22	F23	A l 31	Si36	P38
Доля отобранных нейтронов	2,23 · E-06	9,05 · E-07	2,16 · E-07	2,13 · E-07	3,58 · E-06	3,13 · E-06	< 2,13 · E-07	3,87 · E-06

Итоговое количество событий в активном аргоне

Изотопы	Т ₁₂ , с	Выход изотопов в активном Ar за 10 лет	Выход нейтронов в активном Ar за 10 лет	Кол-во нейтроно в после отсечки вето 5 с	Итоговое кол-во после отбора
C16	0,747	1,15	1,14	1,10E-02	3,30E-07
N17	4,173	20	19	8,28	1,66E-04
O22	2,25	2	0,02	4,29E-03	4,46E-06
F22	4,23	33	2,79	1,23	3,44E-04
F23	2,23	6	0,29	6,21E-02	2,49E-06
Al31	0,747	93	1,49	6,85E-03	1,99E-06
Si36	0,450	12	1,20	5,43E-04	<5,43E-09
P38	0,640	29	3,48	1,55E-02	3,10E-07
Всего		196,15	29,4	9,61	5,19E-04

16

Итоговое количество событий в объёме нейтронного вето

Изотопы	Т _{1/2} , с	Выход изотопов в среднем Ar за 10 лет	Выход нейтронов в среднем Ar за 10 лет	Кол-во нейтроно в после отсечки вето 5 с	Итоговое кол-во после отбора
C16	0,747	2	1,98	1,91E-02	3,83E-07
N17	4,173	34	32,3	14,08	<1,41E-04
O22	2,25	3,2	0,032	6,86E-03	<6,86E-08
F22	4,23	50	4,23	1,86	<1,86E-05
F23	2,23	12	0,588	1,24E-01	2,49E-06
Al31	0,747	159	2,54	1,17E-02	2,34E-07
Si36	0,450	19	1,9	8,59E-04	<8,59E-09
P38	0,640	56	6,72	2,98E-02	5,98E-07
Всего		335	50,3	16,13	<1,63E-04

17

Итоговое количество событий от внешнего объёма аргона

Изотопы	Т ₁₂ , с	Выход изотопов во внешнем Ar за 10 лет	Выход нейтронов во внешнем Ar за 10 лет	Итоговое кол-во после отбора
C16	0,747	21	20,8	4,64E-05
N17	4,173	220	209	1,89E-04
O22	2,25	18	0,18	3,88E-08
F22	4,23	340	28,7	6,11E-06
F23	2,23	86	4,21	1,51E-05
Al31	0,747	1153	18,5	5,78E-05
Si36	0,450	115	11,5	<2,45E-06
P38	0,640	343	41,2	1,59E-04
Долгоживущие		2296	334	4,76E-04
Остальные		1670	276	5,05E-04
Всего		3966	610	9,81E-04

Итоговое количество событий во всём объёме детектора Darkside-20k

Объёмы	Итоговое количество фоновых событий за 10 лет
Активный аргон	5,2E-04
Аргон нейтронного вето	<1,6E-04
Внешний аргон	9,8E-04
Всего	<1,7E-03

Итоговое количество событий

 Общее итоговое количество WIMP-подобных событий во всём объёме детектора от β-n распадов составляет < 1,7 · 10⁻³ событий для экспозиции 200 тонн год, которое является наименьшей оценочной компонентой в общий вклад всего фона эксперимента Darkside-20k.

The have	Фоновые события в ROI
тип фона	[200 тонн ·год] ⁻¹
<i>(α,n)</i> нейтроны от ²³⁸ U, ²³⁵ U и ²³² Th	$9.5 imes 10^{-2}$
Мгновенные нейтроны от деления ²³⁸ U	$<\!\!2.3 \times 10^{-3}$
Нейтроны от ²²² Rn	${<}1.4\times10^{-2}$
Космогенные нейтроны	$< 6.0 \times 10^{-1}$
Нейтроны из горных пород	$1.5 imes 10^{-2}$
Поверхностный α-распад + S2 совпадения	$< 5.0 \times 10^{-2}$
Коррелированные S1 + Черенков совпадения	${<}1.8\times10^{-2}$
Некореллированные S1 + Черенков совпадения	$< 3.0 \times 10^{-2}$
³⁹ Ar, космогенная активация и ү радиоактивность	${<}1.0\times10^{-1}$

Заключение

- В выпускной работе был изучен фон установки Darkside-20k, возникающий в результате образования космогенных изотопов.
- Была разработана программа в пакете Geant4, моделирующая прохождение мюонов и вторичных частиц космогенного происхождения через установку Darkside-20k, получен выход β – n изотопов в детекторе за 10 лет эксплуатации.
- Было проведено моделирование β n распадов космогенного происхождения в установке Darkside-20k.
- Впервые получены результаты оценки фона от событий, имитирующих WIMP, возникших в результате взаимодействия запаздывающих нейтронов от β – n изотопов, которая составила < 1,7 · 10⁻³ событий в детекторе для экспозиции 200 тонн·год. Полученные результаты будут использоваться в коллаборации Darkside для анализа общего фона детектора.

Спасибо за внимание

Расположение космических частиц (жёлтым) относительно объёма нейтронного вето (белым)

β-п переходы С16

Возможный β-n переход O22

S_n = 5230 keV - энергия, необходимая для отделения нейтрона от F22

Возможный энергетический уровень F22 с наибольшей энергией излучаемого нейтрона E = 5750 keV

S_n = 10364 keV - энергия, необходимая для отделения нейтрона от Ne22

Возможный энергетический уровень Ne22 с наибольшей энергией излучаемого нейтрона E = 10749 keV

$$E_n = 385 \text{ keV}$$
 $E_{e-max} = 69 \text{ keV}$

Возможный β-n переход F22 S_n = 5201 keV - энергия, необходимая для отделения нейтрона от Ne23

Возможный энергетический уровень Ne23 с наибольшей энергией излучаемого нейтрона E = 6445 keV $E_n = 1244 \text{ keV}$ $E_{e_max} = 1995 \text{ keV}$

Возможный β-n переход F23

S_n = 8036 keV - энергия, необходимая для отделения нейтрона от S38

 $E_n = 4064 \text{ keV}$ $E_{e-max} = 140 \text{ keV}$

Нет возможного энергетического уровня S38 для отделения нейтрона

S_n = 6587 keV - энергия, необходимая для отделения нейтрона от Si31

Возможный энергетический уровень Si31 с наибольшей энергией излучаемого нейтрона E = 7944 keV

 $E_n = 1357 \text{ keV}$ $E_{e-,max} = 54 \text{ keV}$

S_n = 3465 keV - энергия, необходимая для отделения нейтрона от РЗ6

Возможный энергетический уровень РЗ6 с наибольшей энергией излучаемого нейтрона E = 3630 keV

$$E_{n} = 165 \text{ keV} \qquad E_{e,max} = 4180 \text{ keV}$$

$$7810$$

$$6^{-}$$

$$B^{-}$$

$$B^{-$$

Возможный β-n переход Al31

Возможный β-n переход Si36