МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

На правах рукописи

ПОПОВ ДАНИЭЛЬ ВАЛЕРЬЕВИЧ

РАЗРАБОТКА МЕТОДОВ РАСЧЕТА И АНАЛИЗА СПЕКТРОВ РЕАКТОРНЫХ АНТИНЕЙТРИНО ДЛЯ ФУНДАМЕНТАЛЬНЫХ И ПРИКЛАДНЫХ ЗАДАЧ

Направление подготовки 14.04.02 «Ядерная физика и технологии» Диссертация на соискание степени магистра

Научный руководитель, д.ф.-м.н., проф.

_____ М. Д. Скорохватов

Москва2022

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

РАЗРАБОТКА МЕТОДОВ РАСЧЕТА И АНАЛИЗА СПЕКТРОВ РЕАКТОРНЫХ АНТИНЕЙТРИНО ДЛЯ ФУНДАМЕНТАЛЬНЫХ И ПРИКЛАДНЫХ ЗАДАЧ

Студент	Д. В. Попов
Научный руководитель,	
д.фм.н., проф.	М. Д. Скорохватов
Рецензент,	
д.фм.н., в.н.с.	В. И. Копейкин
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов
Рук. учеб. прог.,	
д.фм.н., проф.	М. Д. Скорохватов

ОГЛАВЛЕНИЕ

Bı	веде	ние		4
1	Pea	кторн	ые антинейтрино и их регистрация	9
	1.1	Спект	гры реакторных антинейтрино	9
	1.2	Обра	гный бета–распад	11
2	Me	тод ко	онверсии	14
	2.1	Cooth	зетствие конверсионного и реального спектров реакторных	
		антин	ейтрино	14
	2.2	Алгор	ритм конверсии КИ	15
	2.3	Подго	эночные спектры бета–распада	17
		2.3.1	Функция Ферми	18
		2.3.2	Поправки на конечные размеры ядер	20
		2.3.3	Поправка на экранирование	22
		2.3.4	Радиационные поправки	23
		2.3.5	Слабый магнетизм	25
3	Рез	ульта	гы конверсии	28
	3.1	Оцени	ка погрешностей, сравнение с другими моделями и экспери-	
		мента	ильными данными	28
	3.2	Доказ	зательство устойчивости отношений выходов ОБР	33
		3.2.1	Устойчивость к поправкам подгоночных спектров	33
		3.2.2	Устойчивость к вкладу запрещенных переходов	37
За	клю	очение		40
C	писо	к испо	ользованных источников	42
Π_{j}	рилс	жени	е. Спектры реакторных антинейтрино модели КИ	48

ВВЕДЕНИЕ

С момента открытия электронных антинейтрино в эксперименте Ф. Райнеса и К. Коуэна в Саванна–Ривер [1] было сформулировано и активно развивается по сей день новое направление в физике атомного ядра и элементарных частиц — физика и спектроскопия реакторных антинейтрино. За последние два десятилетия в этой области были достигнуты результаты, имеющие важное значение как для фундаментальных исследований (изучение нейтринных осцилляций, объяснение природы массы нейтрино, поиск стерильных состояний нейтрино и т.д.), так и для прикладных приложений:

- в реакторном эксперименте KamLAND [2] в 2003 2008 впервые наблюдалось исчезновение потока антинейтрино реактора, что согласовывалось с гипотезой нейтринных осцилляций;
- впервые в реакторном эксперименте Double Chooz [3] было указано на ненулевое значение угла смешивания θ₁₃, что открывало возможность планирования дальнейших осцилляционных экспериментов, чувствительных к иерархии масс нейтрино и возможному CP–нарушению в лептонном секторе; дальнейшие измерения θ₁₃ с большей статистикой проводились коллаборациями Daya Bay [4] и RENO [5];
- в реакторных нейтринных экспериментах проводятся исследования, направленные на поиск новой физики вне рамок Стандартной Модели (в частности, уже упоминавшийся поиск стерильных нейтрино — см., например, [6–8]), что в первую очередь связано со следующими экспериментальными аномалиями:
 - "Reactor Antineutrino Anomaly" (RAA) [9]: измеренный на стандартном удалении 15–100 м от реактора поток реакторных антинейтрино оказался на 5% меньше теоретически ожидаемого [10; 11];
 - "Bump effect" [12; 13]: в области энергий реакторных антинейтрино 5—7 МэВ наблюдается локальный 10% избыток измеренного потока над теоретически ожидаемым [6; 11];

• в Курчатовском Институте (КИ) Л.А. Микаэляном было предложено использовать антинейтрино ядерного реактора в качестве инструмента для удаленного мониторинга работы последнего [14–16]. Идея получает свое развитие и реализацию в недавних работах [17–19], в том числе для задач ядерного нераспространения [20; 21].

Недостаточно полная совокупность сведений о спектрах реакторных антинейтрино может приводить к неопределенностям в анализе реакторных экспериментов, а иногда и к неоднозначной интерпретации результатов. В связи с повышением точности измерений и планированием реакторных экспериментов нового поколения (например, [22]), изучение реакторных спектров антинейтрино в последние годы приобретает особую **актуальность**.

Существует два основных подхода к вычислению спектров реакторных антинейтрино: метод прямого суммирования и метод конверсии. Метод прямого суммирования (также называемый методом *ab initio* — методом расчёта из первых принципов) состоит в вычислении спектров антинейтрино от всех бета-активных продуктов деления топлива ядерного реактора, основную часть которого (боле
е99%)составляют тяжелые изотопы $^{235}{\rm U},\,^{238}{\rm U},\,^{239}{\rm Pu},\,^{241}{\rm Pu}$, и их последующем сложении с учётом активности каждого продукта (см., например, обзор [23] и работу [24]). Всего в спектры бета-электронов и антинейтрино дают вклад порядка нескольких тысяч ядерных переходов; для части переходов экспериментальные данные о схемах распада могут быть не вполне достоверными из-за эффекта пандемониума [25], а в ряде случаев данные совсем отсутствуют. Помимо этого, зачастую имеется разброс в информации о кумулятивных выходах продуктов деления, приводимой в разных базах данных; более того, метод предполагает, что при расчёте спектров для всех осколков деления используются одинаковые допущения и приближения, что не всегда правомерно (см., например, анализ, приведённый в работе [26]). Всё сказанное осложняет предсказания спектров в рамках подхода *ab initio*.

Второй метод — метод конверсии — в своей наиболее широко используемой форме был сформулирован и применен в работах [27–30]. Предложенный подход основан на "генетической" связи между бета-спектрами электронов и антинейтрино и заключается в следующем. Тонкие фольги изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu облучались в потоке тепловых нейтронов реактора Института Лауэ—Ланжевена (ILL), бета-электроны от продуктов деления выводились из реактора и измерялись спектрометром с высоким разрешением [31]. Каждый измеренный таким образом кумулятивный бета-спектр описывался как сумма некоторого количества (обычно около 30) синтетических разрешенных бетаспектров, параметры которых определялись методом подгонки. Далее, для таких переходов производился пересчёт электронного спектра в антинейтринный и полученные спектры суммировались для получения кумулятивных спектров соответствующих изотопов $\rho_{\nu}^{235}(E_{\nu}), \rho_{\nu}^{239}(E_{\nu}), \rho_{\nu}^{241}(E_{\nu}).$

Поскольку деление ²³⁸U инициируется быстрыми нейтронами, соответствующий кумулятивный бета-спектр невозможно было измерить на реакторе ILL, и спектр антинейтрино $\rho_{\nu}^{238}(E_{\nu})$ был рассчитан только из предположений теоретических моделей (например, [32]). Измерение кумулятивного бетаспектра продуктов деления ²³⁸U быстрыми нейтронами было выполнено в Техническом университете Мюнхена (TUM) в эксперименте на нейтронном источнике FRM с последующем пересчетом в спектр антинейтрино $\rho_{\nu}^{238}(E_{\nu})$ [33].

В 2007 году в работе [34] был проведен дополнительный анализ процедуры конверсии на основе моделирования методом Монте–Карло, получены условия применимости этой процедуры, обеспечивающие восстановление спектров реакторных антинейтрино с точностью порядка 1%. В частности, было показано, что для достижения такой точности требуется информация из ядерных баз данных о связи между эффективным средним зарядом ядра и граничной энергией для реальных бета–переходов.

В работе [35] для получения кумулятивных спектров антинейтрино продуктов деления 235 U, 239 Pu и 241 Pu был применен смешанный подход. Сначала спектры электронов и антинейтрино от переходов с хорошо известными параметрами суммировались согласно методу *ab initio*. Далее, для определения вклада неизученных переходов, вычисленный кумулятивный бета–спектр вычитался из данных ILL; результат вычитания преобразовывался методом конверсии в спектр антинейтрино. Итоговый спектр антинейтрино получался сложением вкладов изученных и неизученных переходов. Нормировка спектров антинейтрино, полученных этим новым методом, примерно на 3% превышала нормировку спектров, полученных группой ILL [27–30].

Позднее в работе [36] алгоритм конверсии спектров бета–электронов с использованием только виртуальных бета–переходов был дополнен с помощью введения ряда поправок для описания разрешенных бета–спектров. Результаты для ²³⁵U, ²³⁹Pu и ²⁴¹Pu хорошо согласовались с результатами смешанной модели [35] и подтвердили сдвиг нормировки на 3% по сравнению с ILL. По итогам работ [35; 36] была сформирована т.н. модель Huber–Mueller (HM), широко применяемая для анализа реакторных нейтринных экспериментов, сочетающая в себе результаты конверсионной модели [36] для спектров антинейтрино продуктов деления ²³⁵U, ²³⁹Pu и ²⁴¹Pu и спектр ²³⁸U из работы [35].

Дальнейшее развитие методика расчета спектров получила в работах [37– 39] путем рассмотрения запрещенных переходов первого порядка. Известно, что вклад таких переходов в кумулятивные реакторные спектры составляет около 25%, и правильный учет их формы существенен в рамках метода *ab initio*. Метод конверсии же основан на преобразовании измеренного бета–спектра, в котором уже содержится вклад запрещённых переходов. Соответственно, можно ожидать, что процедура конверсии реального бета–спектра в "генетически" связанный с ним спектр антинейтрино слабо зависит от формы подгоночных спектров. Анализ вопроса в работах [37; 38] показал, что варьирование доли запрещённых переходов приводит к изменениям значений конвертированных спектров в пределах 1–4%. Тем не менее, на данный момент проблема о правильном учёте запрещённых переходов в методе конверсии остается открытой.

Отметим, что ни одна из представленных моделей не объясняет реакторную антинейтринную аномалию [9] и "bump"–эффект [11–13].

Целью настоящей работы является уточнение кумулятивных спектров реакторных антинейтрино. В ходе исследования ставились следующие **задачи**:

- Сформулировать и реализовать математическую модель процедуры конверсии кумулятивных бета-спектров в спектры антинейтрино, описать ограничения предложенной методики и неучтенные факторы в предсказании реальных реакторных спектров;
- Провести отбор поправок, вносящих существенный вклад (в пределах 1% и выше) в форму одиночных бета-спектров; привести сравнительный анализ различных моделей для одной и той же поправки;
- Сформулировать и реализовать методы анализа погрешностей предложенной процедуры расчета, вызванных как наличием статистических экспериментальных ошибок, так и неопределенностями самой процедуры;
- 4) Провести конверсию кумулятивных бета–спектров группы ILL [27–30] в спектры антинейтрино, привести сравнение полученных результатов с дру-

гими моделями (HM [35; 36], TUM [33]) и данными реакторных экспериментов [40].

5) Провести анализ устойчивости процедуры расчета к возмущениям исходных данных и используемых допущений;

Научная новизна. Объединение представленной в настоящей работе методики расчета спектров реакторных антинейтрино с данными группы ILL [27– 30] и результатами по измерению отношения кумулятивных реакторных бета– спектров, полученными группой НИЦ «Курчатовский институт» [41], формирует новую модель спектров реакторных антинейтрино — модель Курчатовского института (КИ), предсказания которой согласуются с результатами реакторных экспериментов и позволяют решить проблему RAA [42]. Представленный анализ аддитивности влияния различных поправок на процедуру конверсии объясняет различие спектров антинейтрино моделей HM [35; 36] и ILL [27–30] и позволяет упростить вычисления наблюдаемых величин.

Методология и методы исследования. Настоящая работа является расчетно–теоретической и в основном использует численные методы (в частности, Монте-Карло) и методы статистического анализа. При описании бета– спектра и его поправок используется аппарат квантовой механики и квантовой теории поля.

1 РЕАКТОРНЫЕ АНТИНЕЙТРИНО И ИХ РЕГИСТРАЦИЯ

1.1 СПЕКТРЫ РЕАКТОРНЫХ АНТИНЕЙТРИНО

Принцип работы ядерного реактора основан на самоподдерживающейся, цепной реакции деления тяжелых ядер, сопровождающейся выделением энергии. При одном таком делении образуется 2 (или более) нестабильных осколка с избыточным числом нейтронов, которые претерпевают серию бета–распадов для возвращения в долину стабильности. На один акт деления приходится в среднем 6 бета–распадов, что соответствует рождению 6 электронных антинейтрино с энергиями от 0 до 8 МэВ.

Поток антинейтрино $\Phi_{\nu}(E_{\nu}, t)$ на расстоянии *L* от центра активной зоны реактора в момент времени *t* в дипольном приближении описывается следующим уравнением:

$$\Phi_{\nu}(E_{\nu},t) = \frac{1}{4\pi L^2} \sum_{i} N_f^{(i)}(t) \,\rho_{\nu}^{(i)}(E_{\nu}) \,\left[\mathrm{M} \Im \mathrm{B}^{-1} \,\mathrm{cm}^{-2} \,\mathrm{c}^{-1}\right], \quad (1.1)$$

где индекс *i* пробегает значения ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, $N_f^{(i)}(t)$ — число делений *i*-ого изотопа в единицу времени в момент времени, $\rho_{\nu}^{(i)}(E_{\nu})$ — кумулятивный спектр реакторных антинейтрино продуктов деления *i*-ого изотопа «в момент рождения», нормированный на одно деление *i*-ого изотопа.

Отметим, что продукты деления 235 U, 238 U, 239 Pu и 241 Pu являются основными, но не единственными источниками реакторных антинейтрино. Существуют и другие процессы, приводящие к излучению антинейтрино, такие как, например, захват нейтронов в материалах активной зоны реактора. Описание этих процессов, которые далее не рассматриваются, можно найти в [43]. Их вклад в интенсивность составляет не более 3-3.5% и важен только в области до 3–3.5 МэВ.

Числа делений $N_f^{(i)}$ связаны с тепловой мощностью реактор
а $P_{\rm th}$ соотношением

$$P_{\rm th} = \sum_{i} N_f^{(i)} \varepsilon_i = N_f \sum_{i} \alpha_i \varepsilon_i = N_f \langle \varepsilon \rangle , \qquad (1.2)$$

где $N_f = \sum_i N_f^{(i)}$ — полное число делений, $\alpha_i = N_f^{(i)}/N_f$ — доля делений *i*ого изотопа, ε_i — тепловая энергия, выделяемая в активной зоне при одном делении *i*-ого изотопа, $\langle \varepsilon \rangle = \sum_i \alpha_i \varepsilon_i$ — средняя тепловая энергия, выделяемая в активной зоне при одном делении.

В этих обозначениях поток антинейтрино (1.1) можно представить в одной из следующих форм:

$$\Phi_{\nu}(E_{\nu},t) = \frac{N_f}{4\pi L^2} \sum_{i} \alpha_i(t) \rho_{\nu}^{(i)}(E_{\nu}) = \frac{P_{\rm th}}{4\pi L^2 \langle \varepsilon \rangle} \sum_{i} \alpha_i(t) \rho_{\nu}^{(i)}(E_{\nu}) \,. \tag{1.3}$$

Каждый из кумулятивных спектров антинейтрино $\rho_{\nu}^{(i)}(E_{\nu})$ является суммой по всем возможным продуктам деления f и по всем возможным реализациям их бета–распадов b [35; 44]:

$$\rho_{\nu}^{(i)}(E_{\nu}) = \sum_{f} \sum_{b} a_{f} \operatorname{BR}_{f}^{b} \rho_{\nu}^{fb}(E_{\nu}, Q_{fb}, Z_{f}, A_{f}), \qquad (1.4)$$

где a_f — активность f-ого элемента, нормированная на одно деление i-ого изотопа, BR_f^b — коэффициент ветвления (branching ratio) — доля f-ядер, распадающихся по данной b-ветви относительно всех f-ядер, Q_{fb} — граничная энергия бета—распада (часто вместо Q_{fb} используют $E_0^{(fb)} = Q_{fb} + m_e$ — граничную энергию спектра, выраженную в терминах полной энергии), Z_f, A_f заряд и атомный номер f ядра. Входящий в (1.4) одиночный спектр антинейтрино $\rho_{\nu}^{fb}(E_{\nu}, Q_{fb}, Z_f, A_f)$ "генетически" связан с соответствующим ему одиночным бета—спектром:

$$\rho_{\beta}^{fb} = k \ p_{\beta} E_{\beta} (Q_{fb} - T_{\beta})^2 \ F(Z_f, E_{\beta}) \ C^{fb}(E_{\beta}) \ \delta(Q_{fb}, Z_f, E_{\beta}) , \qquad (1.5)$$

где k — нормировочный множитель, $p_{\beta}, T_{\beta}, E_{\beta}$ — импульс, кинетическая и полная энергии β -электрона соответственно, $F(Z_f, E_{\beta})$ — функция Ферми, описывающая кулоновское взаимодействие β -электрона с дочерним ядром. Множитель $C^{(bf)}(E_{\beta})$ — фактор формы — включает в себе ядерный матричный элемент и зависит от запрещенности перехода (в случае разрешенных переходов он равен единице). Последний множитель $\delta(Q_{fb}, Z_f, E_{\beta})$ содержит различные поправки к одиночному спектру (связанные, например, с конечными размерами ядер, экранированием дочернего ядра от β -электронов электронами с атомных оболочек и т.д.), наиболее существенные из которых будут далее обсуждаться дополнительно. Для получения искомого $\rho_{\nu}^{fb}(E_{\nu}, Q_{fb}, Z_f, A_f)$ в выражении (1.5) необходимо сделать замену $T_{\beta} = E_{\nu} \rightarrow Q_{fb} - T_{\beta}$ и изменить поправки, входящие в $\delta(Q_{fb}, Z_f, E_{\beta})$, если для антинейтринного спектра они имеют отличный вид, чем для бета-спектра.

1.2 ОБРАТНЫЙ БЕТА-РАСПАД

С момента открытия в экспериментах на ядерном реакторе [1], детектирование антинейтрино осуществляется, в основном, по реакции обратного бета– распада (ОБР)

$$\bar{\nu}_e + p \to n + e^+ \tag{1.6}$$

с пороговой энергией антинейтрино

$$E_{\rm thr} = \frac{(m_n + m_e)^2 - m_p^2}{2m_p} \approx 1.806 \,\,[{\rm M}\Im {\rm B}] \,, \tag{1.7}$$

где m_n, m_p и m_e — массы нейтрона, протона и электрона соответственно.

Сечение реакции ОБР крайне мало (порядка 10^{-43} см²) при энергиях реакторных антинейтрино, поэтому для эффективной регистрации необходимы большие объемы рабочего вещества детектора, в качестве которого обычно используют сцинтиллятор с высоким содержанием протонов. Рожденный в результате ОБР позитрон забирает большую часть энергии реакции, которую затем достаточно быстро (за несколько наносекунд) теряет в рабочем веществе за счет ионизационных и радиационных потерь, после чего происходит аннигиляция позитрона с электронов вещества в два γ -кванта с энергиями $m_e = 0.511$ МэВ. Нейтрон ОБР тем временем замедляется и диффундирует в среде до момента захвата протоном с последующим испусканием γ -кванта с энергией 2.2 МэВ. Происходит это через фиксированное время после реакции ОБР. В результате описанного процесса на выходе детектора появляются два сигнала быстрый, от потерь энергии позитроном и аннигиляции, и запаздывающий, от захвата нейтрона. Отметим, что сигнал определенной энергии от нейтрона, наблюдаемый через фиксированное время после первого сигнала, выступает в качестве естественного триггера регистрации антинейтринного события.

В наиболее общем виде сечение ОБР представлено в работах [45–47]. В релятивистски–ковариантной форме оно записывается в виде [45]:

$$\frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}t} = \frac{G_F^2 |V_{ud}|^2}{4\pi (s - m_p^2)^2} \sum_{i=1}^7 A_i(s, t) , \qquad (1.8)$$

где G_F — постоянная Ферми слабого взаимодействия, V_{ud} — ud–элемент СКМматрицы смешивания, s, t — мандельштамовские переменные. Явный вид функций $A_i(s,t)$ можно найти в приложении работы [45].

В системе покоя протона, где $s = 2m_p E_{\nu}, t = m_n^2 - m_p^2 - 2m_p (E_{\nu} - E_e),$ дифференциальное сечение ОБР записывается как

$$\frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}E_e}(E_e, E_\nu) = 2m_p \frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}t}.$$
(1.9)

Отметим, что сечение обратного бета–распада известно с точностью долей процента при известных константах слабого взаимодействия $G_V = G_F g_V$ и $G_A = G_F g_A$, которые можно получить либо из измерения времени жизни свободного нейтрона, либо из измерений угловых корреляций $e\bar{\nu}_e$ в бета–распаде и родственных ему процессах.

Используя выражения (1.8) – (1.9) для дифференциального сечения ОБР и предсказываемый поток антинейтрино ядерного реактора (1.1, 1.3), можно записать ожидаемый спектр позитронов:

$$\frac{\mathrm{d}N_e}{\mathrm{d}E_e}(E_e,t) = \epsilon N_p \int_{E_{\nu\,\min}}^{E_{\nu\,\max}} \Phi_{\nu}(E_{\nu},t) \frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}E_e}(E_e,E_{\nu}) \,\mathrm{d}E_{\nu} \left[\mathrm{M}\Im\mathrm{B}^{-1} \,\mathrm{c}^{-1}\right], \qquad (1.10)$$

где ϵ — эффективность регистрации, N_p — число протонов мишени. Традици-

онно выражение (1.10) записывают в более удобном виде:

$$\frac{\mathrm{d}N_e}{\mathrm{d}E_e}(E_e, t) = \frac{\epsilon N_p}{4\pi L^2} \frac{P_{\mathrm{th}}}{\langle \varepsilon \rangle} \sum_i \alpha_i(t) \rho_e^{(i)}(E_e) \,. \tag{1.11}$$

Здесь введен спектр позитронов $\rho_e^{(i)}(E_e)$, порождаемый кумулятивным спектром антинейтрино продуктов деления *i*-ого изотопа "в момент рождения":

$$\rho_e^{(i)}(E_e) = \int_{E_{\nu \min}}^{E_{\nu \max}} \rho_{\nu}^{(i)}(E_{\nu}) \frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}E_e}(E_e, E_{\nu}) \,\mathrm{d}E_{\nu} \left[\mathrm{cm}^2 \,\mathrm{M} \Im \mathrm{B}^{-1} \,\mathrm{d} \mathrm{e} \pi^{-1}\right]. \tag{1.12}$$

Интегрирование (1.11) по наблюдаемым энергиям позитрона позволяет получить интегральную скорость счета антинейтринных событий в единицу времени:

$$N_{e}(t) = \frac{\epsilon N_{p}}{4\pi L^{2}} \frac{P_{\text{th}}}{\langle \varepsilon \rangle} \sum_{i} \alpha_{i} \int_{E_{e} \min}^{E_{e} \max} \rho_{e}^{(i)}(E_{e}) \, \mathrm{d}E_{e} = \frac{\epsilon N_{p}}{4\pi L^{2}} \frac{P_{\text{th}}}{\langle \varepsilon \rangle} \sum_{i} \alpha_{i} \, \sigma^{(i)}$$
$$= \frac{\epsilon N_{p}}{4\pi L^{2}} \frac{P_{\text{th}}}{\langle \varepsilon \rangle} \langle \sigma \rangle \, [\mathrm{c}^{-1}].$$
(1.13)

Величины $\sigma^{(i)}$ и их среднее значение $\langle \sigma \rangle$ с размерностью [см² дел⁻¹] называются сечениями ОБР, взвешенными по спектрам реакторных антинейтрино продуктов деления *i*-ых изотопов (выходы ОБР на деление *i*-ого изотопа). По своему построению они характеризуют интенсивность взаимодействия реакторных антинейтрино и являются универсальными наблюдаемыми.

2 МЕТОД КОНВЕРСИИ

2.1 СООТВЕТСТВИЕ КОНВЕРСИОННОГО И РЕАЛЬНОГО СПЕКТРОВ РЕАКТОРНЫХ АНТИНЕЙТРИНО

Перед началом описания алгоритма конверсии, перечислим факторы, ограничивающие точность описания реального спектра антинейтрино от ядерного реактора. Как было отмечено выше, продукты деления ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu являются основными, но не единственными источниками реакторных антинейтрино (см. [43]). Помимо этого, время облучения мишеней изотопов урана и плутония в экспериментах ILL составляло около одних суток, в то время как на энергетических реакторах типа ВВЭР облучение топлива происходит в течение примерно 4 лет. В результате измеренный в ILL спектр является неравновесным и не в полной мере воспроизводит вклад долгоживущих продуктов деления. Учет бета–переходов с временами жизни более суток увеличивает выход бета–электронов на величину до 5% в области энергий до 3 МэВ [43].

Наконец, энергетические спектры нейтронов при облучении мишеней в исследовательском и энергетическом реакторах, вообще говоря, различны. В случае энергетических реакторов в деления изотопов урана и плутония дают вклад надтепловые нейтроны, которые могут изменить выходы продуктов деления. Однако согласно оценке [48], различие в энергии нейтронов приводит к изменению выхода антинейтрино менее чем на 1% на одно деление и не существенно влияет на спектры.

Таким образом, конвертированный спектр антинейтрино не может в полной мере описать спектр антинейтрино от ядерного реактора, особенно в области до 3–3.5 МэВ, где требуется введение вклада дополнительных источников нейтринного излучения (см. [43]).

2.2 АЛГОРИТМ КОНВЕРСИИ КИ

Пусть имеется экспериментально измеренный кумулятивный бета-спектр $\rho_{\beta} = \left\{ \rho_{\beta}^{(i)} \pm \Delta \rho_{\beta}^{(i)} \right\}_{i=1}^{N},$ содержащий N точек. Выберем пробное число точек \tilde{s} , начиная с последнего значения: $S_{\tilde{s}}^{N} = \left\{ \rho_{\beta}^{(N-\tilde{s})}, \rho_{\beta}^{(N-\tilde{s}-1)}, ..., \rho_{\beta}^{(N)} \right\},$ и аппроксимируем их функцией $a\rho_{\beta}(T_{\beta}, Q)$ с такими параметрами a и Q, что значение функционала

$$R = R(a, Q) = \sum_{i=N-\tilde{s}}^{N} \left(\rho_{\beta}^{(i)} - a \, \rho_{\beta}(T^{(i)}, Q) \right)^2 \tag{2.1}$$

минимально. Из этого условия находятся значения $\{\tilde{a}_N, \tilde{Q}_N\}$, соответствующие срезу $S^N_{\tilde{s}}$, т.е.

$$\{\tilde{a}_N, \tilde{Q}_N\} = \operatorname{argmin}\left[R(a, Q)\right] . \tag{2.2}$$

После этого строится функция $\tilde{a}_N \rho_\beta(T_\beta, \tilde{Q}_N)$, которая до некоторого значения ρ_β^{N-s} целиком лежит в полосе погрешностей исходного кумулятивного бета–спектра. Значение

$$s = \min\left\{\tilde{s} : \left(\rho^{(N-\tilde{s})} - \tilde{a}_N \rho_\beta(T_\beta^{(N-\tilde{s})}, \tilde{Q}_N)\right) \ge \Delta \rho_\beta^{(N-\tilde{s})}\right\}$$
(2.3)

определяет истинное число точек *s* в первом срезе. Для набора $S_s^N = \left\{ \rho_{\beta}^{(N-s)}, \rho_{\beta}^{(N-s-1)}, ..., \rho_{\beta}^{(N)} \right\}$ описанная выше процедура аппроксимации повторяется, находятся истинные значения a_N и Q_N . Полученный подгоночный спектр вычитается из исходного кумулятивного:

$$\rho_{\beta}^{(i)} == \rho_{\beta}^{(i)} - a_N \,\rho_{\beta}(T_{\beta}^{(i)}, Q_N) \,, \quad i = 1, 2, ..., N \,, \tag{2.4}$$

где "==" означает операцию присваивания.

Алгоритм, описанный выше, итерационно повторяется до тех пор, пока весь экспериментальный спектр ρ_{β} не будет описан, в результате чего получается набор значений $\{a_i, Q_i\}_{i=1}^M$ (M — число срезов), с помощью которого строится кумулятивный спектр антинейтрино, соответствующий исходному ρ_{β} :

$$\rho_{\nu}(E_{\nu}) = \sum_{i=1}^{M} a_i \, \rho_{\nu}(E_{\nu}, Q_i) \tag{2.5}$$

Результаты применения процедуры подгонки бета–спектров показывают, что согласие с экспериментальными данными ILL достигается уже при использовании 10–15 виртуальных переходов. Однако, в отличие от гладкого бета– спектра, на конверсионном спектре антинейтрино появляются пилообразные скачки в области верхних границ Q энергии виртуальных бета–переходов. Очевидно, что такие скачки имеют нефизическую природу и не воспроизводят тонкую структуру спектра антинейтрино. Устранение этих скачков в рамках процедуры конверсии КИ проводилось в 2 этапа. На первом этапе к первичному набору виртуальных бета–спектров добавлялись с меньшими весами дополнительные. При этом учитывалось, что в мягкую область энергий реального кумулятивного спектра вносит вклад большее число бета–переходов. Параметры дополнительных ветвей уточнялись в процессе описания всего кумулятивного бета–спектра целиком, с использованием как первичного, фиксированного набора, так и дополнительного. На втором этапе проводилось усреднение уточненного спектра антинейтрино по энергетическим диапазонам шириной 250 кэВ.

Форма подгоночного бета–спектра определяется, вообще говоря, следующими параметрами: нормировочным коэффициентом k, энергией реакции Q, зарядом Z и атомным номером A дочернего ядра. Традиционно на них накладываются дополнительные условия связи, основанной на информации о реальных бета–распадах из ядерных баз данных. Это решение упрощает модель за счет уменьшения числа свободных параметров.

Широко используемый подход состоит в том, чтобы в качестве параметра *Z* взять эффективный ядерный заряд [29; 34; 36]:

$$\langle Z \rangle(Q) = \frac{\sum_{Z,A} Y(Z,A) \sum_{f} BR_{f}(Q)Z}{\sum_{Z,A} Y(Z,A) \sum_{f} BR_{f}(Q)}$$
(2.6)

где Y(Z, A) — кумулятивный выход деления. В модели конверсии КИ используется аппроксимация $\langle Z \rangle(Q)$ квадратичной функцией, предложенная в работе [36]:

$$\langle Z \rangle(Q) = c_0 + c_1 Q + c_2 Q^2.$$
 (2.7)

Коэффициенты c_i представлены в таблице 2.1.

Помимо этого, эффективный заряд связывается с атомным номером простым соотношением $A = 2\langle Z \rangle$ (отметим, что влияние параметра A на процедуру конверсии оказывается достаточно малым). Таким образом, в рамках исполь-

Изотоп	c_0	c_1	c_2
^{235}U	$48.992^{+0}_{-0.164}$	$-0.399^{+0.161}_{-0}$	$-0.084^{+0}_{-0.044}$
²³⁹ Pu	$49.650_{-0.214}^{+0}$	$-0.447^{+0.036}_{-0}$	$-0.089^{+0}_{-0.016}$
²⁴¹ Pu	$49.906_{-0.178}^{+0}$	$-0.510^{+0.160}_{-0}$	$-0.044^{+0}_{-0.052}$

Таблица 2.1 — Коэффициенты параметризации $\langle Z \rangle(Q)$

зуемого нами метода конверсии форма подгоночных бета–переходов полностью определяется нормировочным множителем k и энергией реакции Q.

2.3 ПОДГОНОЧНЫЕ СПЕКТРЫ БЕТА-РАСПАДА

Как и в пионерских работах группы К. Шрекенбаха [27–30], процедура конверсии основывалась на подгонке измеренного бета–спектра несколькими виртуальными бета–переходами разрешенного типа, каждый из которых можно описать "наивным" выражением вида

$$\rho_{\beta}^{0}(T_{\beta}) = k \, p_{\beta} \, E_{\beta} \, (Q - T_{\beta})^{2} \, F(Z, E_{\beta}) \,, \qquad (2.8)$$

где k — нормировочный множитель, p_{β}, T_{β} и E_{β} — импульс, кинетическая и полная энергии электрона, Q — энергия реакции, Z — заряд дочернего ядра, $F(Z, E_{\beta})$ — функция Ферми.

Для уточнения формы спектра, в (2.8) были введены следующие поправочные множители: $L(Z, E_{\beta})$ и $C(Z - 1, E_{\beta}, Q)$ — поправки на конечный радиус ядра и слабого взаимодействия, $S(Z, E_{\beta})$ — поправка на экранирование, $G_{\beta}(E_{\beta}, Q)$ — радиационная поправка, $(1 + \delta_{WM})$ — поправка, учитывающая вклад слабого магнетизма. Таким образом, для описания подгоночных спектров было использовано следующее выражение:

$$\rho_{\beta}(T_{\beta}) = \rho_{\beta}^{0}(T_{\beta}) \times L(Z, E_{\beta}) C(Z-1, E_{\beta}, Q) S(Z, E_{\beta}) G_{\beta}(E_{\beta}, Q) (1+\delta_{\text{WM}}) .$$
(2.9)

Спектр антинейтрино $\rho_{\nu}(E_{\nu})$ получается заменами $T_{\beta} \to Q - T_{\beta}$ и $G_{\beta} \to H_{\nu}$, где H_{ν} — радиационная поправка для спектра антинейтрино.

Обсудим каждую из предложенных поправок, её происхождение и вклад в форму одиночного спектра.

2.3.1 ФУНКЦИЯ ФЕРМИ

Функция Ферми F(Z, E) описывает кулоновское взаимодействие точечного дочернего ядра с β -электроном. Формально она определяется как [49]

$$F(Z, E_{\beta}) = \frac{|\Psi_{\text{Coulomb}}|^2}{|\Psi_{\text{free}}|^2}, \qquad (2.10)$$

где $\Psi_{\rm free}$ — свободное решение уравнения Дирака, $\Psi_{\rm Coulomb}$ — решение уравнения Дирака с кулоновским потенциалом. Явный вид функции Ферми описывается следующим уравнением [49]:

$$F(Z, E_{\beta}) = 2(\gamma + 1)(2p_{\beta}R)^{(2\gamma - 1)}e^{(\pi\alpha Z E_{\beta}/p_{\beta})} \times \frac{|\Gamma(\gamma + i\alpha Z E_{\beta}/p_{\beta})|^2}{|\Gamma(2\gamma + 1)|^2}, \qquad (2.11)$$

где $p_{\beta} = \sqrt{E_{\beta}^2 - m_e^2}$, — модуль импульса электрона, $\gamma = \sqrt{1 - (\alpha Z)^2}$, α — постоянная тонкой структуры, $\Gamma(z)$ — гамма-функция, R = R(A) — радиус ядра, для вычисления которого была использована формула Элтона [50]:

$$R(A) = 1.121A^{1/3} + 2.426A^{-1/3} - 6.614/A \ [\text{ΦM$}].$$
(2.12)

На рисунке 2.1 представлены графики функции Ферми (2.11) в зависимости от кинетической энергии бета–электрона T_{β} для Z = 35, 45, 55, а на рисунке 2.2 — нормированные спектры электронов и антинейтрино, иллюстрирующие вклад функции Ферми.

В случае метода конверсии важную роль играет не нормировка спектра (она находится путем подгонки), а его форма. Пусть Δ — какая-либо поправка к одиночному бета–спектру (или спектру антинейтрино). Определим вклад поправки Δ в форму бета–спектра как

$$\widetilde{\Delta} = \frac{\widetilde{k} \, p_{\beta} \, E_{\beta} (Q - T_{\beta})^2 \cdot \Delta}{k \, p_{\beta} \, E_{\beta} (Q - T_{\beta})^2} = \frac{\widetilde{k}}{k} \cdot \Delta \,, \qquad (2.13)$$

где \tilde{k} — нормировка ρ_{β} с учетом поправки Δ , а k — нормировка ρ_{β} без учета поправки. Со спектрами антинейтрино поступим аналогично. Заметим, что $\tilde{\Delta}$

Рисунок 2.1 — Функция Ферми для различных Zв зависимости от кинетической энергии электрона T_β

Рисунок 2.2 — Спектры электронов (а) и антинейтрино (b), построенные с учетом и без учета функции Ферми для синтетического бета–распада сZ=45и $Q=3~{\rm M}{\rm sB}$

зависит от энергии реакции Q, в отличие от Δ . В дальнейшем мы, обсуждая вклад какой-либо поправки в форму спектра, по умолчанию будем подразумевать именно нормированную поправку, согласно выражению (2.13).

2.3.2 ПОПРАВКИ НА КОНЕЧНЫЕ РАЗМЕРЫ ЯДЕР

При рассмотрении вместо точечного ядра ядра конечного размера, решить уравнение Дирака и получить выражение для уточненной функции Ферми F(Z, E) аналитически не представляется возможным. По этой причине в литературе используют различные приближения, связанные с распределениями электрического заряда ρ_{Cl} в ядре. Так, например, ядро можно представить в виде равномерно заряженного шара, радиус которого R подгоняется таким образом, чтобы получить правильное значение $\langle r^2 \rangle^{1/2}$ дочернего ядра [51].

Численное решение уравнения Дирака в такой модели для стабильных ядер было получено в работе [52], а затем расширено в [49] для всех изотопов. Для перехода от точечного ядра к ядру конечного размера достаточно умножить функцию Ферми F(Z, E) на выражение $L_0(Z, E)$, которое в модели [49] имеет вид:

$$L_0^{\text{Wil.}}(Z, E) = 1 + \frac{13(\alpha Z)^2}{60} - ER\alpha Z \frac{(41 - 26\gamma)}{15(2\gamma - 1)} - \alpha ZR\gamma \frac{17 - 2\gamma}{30E(2\gamma - 1)} + a_{-1}\frac{R}{E} + \sum_{n=0}^5 a_n (ER)^n + 0.41(R - 0.0164)(\alpha Z)^{4.5}, \quad (2.14)$$

$$a_n = \sum_{j=1}^6 b_{j,n} \; (\alpha Z)^j$$

где $\gamma = \sqrt{1 - (\alpha Z)^2}$, значения коэффициентов $b_{j,n}$ представлены в таблице 2.2. Таблица 2.2 — Коэффициенты нараметризации ноправки I^{Wil} , или электронов:

Таблица 2.2 — Коэффициенты параметризации поправки $L_0^{\rm Wil.}$ для электронов: воспроизведение таблицы 1 работы [49]

	b_1	b_2	b_3	b_4	b_5	b_6
a_{-1}	0.115	-1.8123	8.2498	-11.223	-14.854	32.086
a_0	-0.00062	0.007165	0.01841	-0.53736	1.2691	-1.5467
a_1	0.02482	-0.5975	4.84199	-15.3374	23.9774	-12.6534
a_2	-0.14038	3.64953	-38.8143	172.137	-346.708	288.787
a_3	0.008152	-1.15664	49.9663	-273.711	657.629	-603.703
a_4	1.2145	-23.9931	149.972	-471.299	662.191	-305.68
a_5	-1.5632	33.4192	-255.133	938.53	-1641.28	1095.36

Помимо описанной выше модели Wilkinson, существует несколько других представлений поправки L_0 . Так, в работе [23] обсуждаются более простые формы L_0 вида:

$$L_0^{\text{Vogel}}(Z, E) = 1 - \frac{10}{9} Z \alpha RE$$
, (2.15)

$$L_0^{\text{Hayes}}(Z, E) = 1 - \frac{8}{5} Z \alpha RE \left(1 + \frac{9}{28} \frac{m_e^2}{E^2} \right) \,. \tag{2.16}$$

Заметим, что выражения (2.14 - 2.16) представляются разложениями по малым величинам (αZ) ≈ 0.34 (при $Z \approx 46$) и (ER) ≈ 0.24 (при $E \approx 8$ МэВ и $R \approx 6$ фм), причем (2.15) и (2.16) даны до первого порядка по (αZER). Исходя из этого, выражение (2.14) представляется более точным, поэтому в модели конверсии КИ использовалось именно оно, т.е. $L_0 = L_0^{\text{Wil.}}$.

Описанная выше функция L_0 связана с конечным размером дочернего ядра при рассмотрении электромагнитного взаимодействия и является дополнением к функции Ферми. Помимо неё существует поправка на конечный размер родительского ядра, связанная уже с неточечностью слабого взаимодействия (а именно — с конечными длинами волн лептонов и распределением нуклонов внутри ядра) [49]. Её явный вид зависит от разрешенности и типа перехода. В случае разрешенных переходов гамов-теллеровского типа она описывается следующим уравнением [49; 51]:

$$C(Z, E, E_0) = 1 + C_0 + C_1 E + C_2 E^2, \qquad (2.17)$$

где

$$C_{0} = -\frac{233}{630}(\alpha Z)^{2} - \frac{(E_{0}R)^{2}}{5} + \frac{2}{35}E_{0}R\alpha Z,$$

$$C_{1} = -\frac{21}{35}R\alpha Z + \frac{4}{9}E_{0}R^{2},$$

$$C_{2} = -\frac{4}{9}R^{2}.$$

На рисунке 2.3 показан вклад поправок $L_0(Z, E)$ и $C(Z, E, E_0)$ в форму одиночных спектров, определенный согласно уравнению (2.13).

Из рисунков видно, что вклад $L_0(Z, E)$ составляет 2–4%, а $C(Z, E, E_0) - 1.5 - 2.5\%$. Итоговый вклад эффектов конечного размера может достигать до

Рисунок 2.3 — Вклад поправок конечного размера в форму одиночного бетаспектра (сплошная линия) и спектра антинейтрино (штриховая линия) для синтетического бета–распада с Z = 46 и Q = 6 МэВ

6%.

2.3.3 ПОПРАВКА НА ЭКРАНИРОВАНИЕ

Выбор поправки на экранирование S также неоднозначен ввиду существования различных моделей потенциала экранирования. Тем не менее, анализ, представленный в работе[51], показывает, что основные модели экранирования согласуются друг с другом в пределах процента. По этой причине мы используем простое выражение S(Z, E), полученное в работе [53] и наиболее широко применяемое в литературе:

$$S(Z, E) = \begin{cases} \frac{\bar{E}}{\bar{E}} \left(\frac{\bar{p}}{p}\right)^{(2\gamma-1)} e^{\pi(\bar{y}-y)} \frac{|\Gamma(\gamma+\mathrm{i}\bar{y})|^2}{|\Gamma(\gamma+\mathrm{i}y)|^2}, & \text{если } \bar{E} > m_e \\ 1, & \text{если } \bar{E} < m_e \end{cases}$$
(2.18)

где

$$\bar{E} = E - V_0, \ \bar{p} = \sqrt{\bar{E}^2 - m_e^2}, \ y = \frac{\alpha ZE}{p}, \ y = \frac{\alpha ZE}{\bar{p}}$$

*V*₀ — потенциал экранирования:

$$V_0 = \alpha^2 (Z - 1)^{4/3} N(Z - 1), \qquad (2.19)$$

N(Z) — линейная интерполяция значений, представленных в таблице 2.3.

Таблица 2.3 — Узлы сеточной функции N(Z) для параметризации поправки на экранирование: воспроизведение таблицы 4.7 работы [53]

Z	1	8	13	16	23	27	29	49	84	92
N(Z)	1.000	1.420	1.484	1.497	1.52	1.544	1.561	1.637	1.838	1.907

На рисунке 2.4 представлен вклад в форму одиночных спектров от поправки экранирования.

Рисунок 2.4 — Вклад поправки на экранирование в форму одиночного бетаспектра (сплошная линия) и спектра антинейтрино (штриховая линия) для синтетического бета–распада с Z = 46 и Q = 6 МэВ

Как видно из рисунка 2.4, изменение формы спектра за счет экранирования может достигать до 1.5% при $Q \approx 6$ МэВ (при $Q \approx 2$ МэВ получим изменение формы на 1%, а при $Q \approx 8$ МэВ форма спектра изменится примерно на 2%).

2.3.4 РАДИАЦИОННЫЕ ПОПРАВКИ

Радиационная поправка обусловлена эффектами квантовой электродинамики и связана с возможностью испускания реальных и виртуальных фотонов. Радиационные поправки G_{β} и H_{ν} в лидирующем порядке теории возмущений (~ α) в аналитическом виде были получены в [54; 55]:

$$G_{\beta}(E_{\beta}, E_{0}) = 1 + \alpha / (2\pi) \cdot g_{\beta}(E_{\beta}, E_{0}),$$

$$H_{\nu}(\hat{E}, E_{0}) = 1 + \alpha / (2\pi) \cdot h_{\nu}(\hat{E}, E_{0}),$$
(2.20)

где

$$g_{\beta} = 3\ln\left(\frac{m_{N}}{m_{e}}\right) - \frac{3}{4} + 4\left(\frac{\tanh^{-1}\beta}{\beta} - 1\right) \left[\frac{E_{0} - E_{\beta}}{3E_{\beta}} - \frac{3}{2} + \ln\left(\frac{2(E_{0} - E_{\beta})}{m_{e}}\right)\right] + \frac{4}{\beta}L\left(\frac{2\beta}{1+\beta}\right) + \frac{1}{\beta}\tanh^{-1}\beta \times \left[2(1+\beta^{2}) + \frac{(E_{0} - E_{\beta})^{2}}{6E_{\beta}^{2}} - 4\tanh^{-1}\beta\right], \qquad (2.21)$$

$$h_{\nu} = 3\ln\left(\frac{m_N}{m_e}\right) + \frac{23}{4} + \frac{8}{\hat{\beta}}L\left(\frac{2\hat{\beta}}{1+\hat{\beta}}\right) + 8\left(\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}} - 1\right) \times \\ \times \ln\left(\frac{2\hat{E}\hat{\beta}}{m_e}\right) + 4\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}}\left(\frac{7+3\hat{\beta}^2}{8} - 2\tanh^{-1}\hat{\beta}\right).$$
(2.22)

Здесь m_N — масса нуклона, $\beta = p_\beta/E_\beta$, $\hat{E} = E_0 - E_\nu$, $\hat{\beta} = \hat{p}/\hat{E}$. Функция L(x), фигурирующая в (2.21) — (2.22), есть функция Спенса, определяемая как

$$L(x) = \int_{0}^{x} \frac{\ln(1-t)}{t} \, \mathrm{d}t \,. \tag{2.23}$$

На рисунке 2.5 показан вклад радиационных поправок в бета–спектр и спектр антинейтрино. В случае бета–спектра изменение формы составляет порядка 6%, в случае спектра антинейтрино порядка 0.5%.

Отметим, что для H_{ν} существует несколько более подробная модель [56], требующая численных расчётов. В среднем, вклады [55] и [56] отличаются друг от друга на 5%, чем можно пренебречь с учетом малости самой поправки H_{ν} , вклад которой в форму спектра проявляется только в жесткой области и составляет порядка 1%. Важно подчеркнуть, что используемая поправка не зависит от Z — вклады (~ αZ)имеют более высокий порядок малости.

Рисунок 2.5 — Вклад радиационных поправок в форму одиночного бетаспектра (сплошная линия) и спектра антинейтрино (штриховая линия) для синтетического бета–распада с Z = 46 и Q = 6 МэВ

2.3.5 СЛАБЫЙ МАГНЕТИЗМ

Слабый магнетизм вызван вкладом дополнительного формфактора, кроме g_a и g_v в слабое взаимодействие, что эффективно приводит к взаимодействию магнитного момента ядра и β -электрона. В случае разрешенных переходов гамов-теллеровского типа поправка имеет вид [57]:

$$\delta_{\rm WM} = \frac{4}{3} E_{\beta} \left[\frac{\mu_{\upsilon} + \frac{\langle J_f | \vec{\Lambda} | J_i \rangle}{\langle J_f | \vec{\Sigma} | J_i \rangle}}{2m_N g_A} \right] \left(2 - \frac{m_e^2}{E_{\beta}^2} - \frac{E_0}{E_{\beta}} \right) \,, \tag{2.24}$$

где m_N — масса нуклона, g_A — аксиальный формфактор (при низких энергиях его можно считать постоянной величиной), μ_v — магнитный момент нуклона, $\vec{\Sigma} = \sum_i \tau_i \vec{\sigma}_i$ — оператор спина, $\vec{\Lambda} = \sum_i \tau_i \vec{l}_i$ — оператор углового момента. Здесь $\vec{l}_i = [\vec{r}_i \times \vec{p}_i]$ — орбитальный момент *i*—ого нуклона, $\vec{\sigma}_i = 2\vec{S}_i, \vec{S}_i$ — спин *i*—ого нуклона.

Строго говоря, отношение матричных элементов $\frac{\langle J_f | \hat{\Lambda} | J_i \rangle}{\langle J_f | \tilde{\Sigma} | J_i \rangle}$ необходимо рассчитывать для каждого перехода индивидуально, однако часто в литературе для простоты его полагают равным -1/2. Данное приближение было подробно рассмотрено в работе [57], там же было показано, что оно вносит менее 1% неопределенности в кумулятивные спектры антинейтрино.

Таким образом, поправка на слабый магнетизм имеет вид:

$$\delta_{\rm WM} \approx \frac{4}{3} E \, \frac{\mu_v - 1/2}{g_A m_N} \left(1 - \frac{m_e^2}{2E^2} - \frac{E_0}{2E} \right) \approx 0.5\% \, E \tag{2.25}$$

На рисунке 2.6 показан вклад поправки слабого магнетизма $1 + \delta_{\text{WM}}$. Из рисунка видно, что слабый магнетизм меняет форму одиночного спектра примерно на 2 - 2.5% при высоких значениях Q (при низких $Q \approx 1 - 2$ МэВ вклад будет порядка 1%).

Рисунок 2.6 — Вклад поправки на слабый магнетизм в форму одиночного бетаспектра (сплошная линия) и спектра антинейтрино (штриховая линия) для синтетического бета–распада с Z = 46 и Q = 6 МэВ

Подытожив вышеизложенное, приведем в сводной таблице 2.4 характерные вклады от каждой поправки и проиллюстрируем их на рисунке 2.7.

Таблица 2.4 —	Поправки к	виртуальным	бета-спектрам,	используемые в	данной
работе.					

Поправка	Физический эффект, учитываемый поправ- кой	Вклад в фор- му спектров, %	Ссылка
L(Z, E)	Влияние размера дочернего ядра, изменяю- щего вид кулоновского поля.	≈ 2	[49]
C(Z, E, Q)	Учет размеров и ядерной структуры роди- тельского ядра, пространственных вариа- ций лептонных волновых функций.	≈ 2.5	[49]
S(Z, E)	Экранирование заряда дочернего ядра электронами атома.	≈ 2.5	[53]
$G_{\beta}(E,Q)$	Влияние на бета-спектр виртуаль- ных/реальных фотонов вследствие элек- тростатического взаимодействия дочернего ядра с улетающим электроном.	≈ 6	[54]
$H_{\nu}(E,Q)$	Косвенное влияния электростатического поля дочернего ядра на спектр антинейтри- но через обмен виртуальными фотонами и учет тормозного излучения.	≈ 1	[55]
$1 + \delta_{WM}$	Поправка на слабый магнетизм, учитыва- ющая эффективное взаимодействие бета– электрона с магнитным моментом ядра.	≈ 2.5	[57]

Рисунок 2.7 — Вклад поправок в форму одиночного бета
–спектра (левая картинка) и спектра антинейтрино (правая картинка) для синтетического бета
– распада сZ=46и $Q=9~{\rm M}{\rm sB}$

З РЕЗУЛЬТАТЫ КОНВЕРСИИ

3.1 ОЦЕНКА ПОГРЕШНОСТЕЙ, СРАВНЕНИЕ С ДРУГИМИ МОДЕЛЯМИ И ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

В процедуре конверсии были использованы скорректированные, согласно данным работы [58], кумулятивные бета–спектры продуктов деления ²³⁵U и ²³⁸U. Спектр антинейтрино $\rho_{\text{KI}}^{235}(E_{\nu})$ был получен непосредственной конверсией скорректированного бета–спектра, после чего был рассчитан спектр антинейтрино $\rho_{\text{KI}}^{238}(E_{\nu})$. Полученные кумулятивные спектры антинейтрино продуктов деления изотопов урана представлены в приложении.

Обсудим ошибки результирующих спектров антинейтрино. Основная погрешность значений связана с переносом ошибок исходного бета–спектра на конвертированный спектр антинейтрино, включающих статистическую погрешность и погрешность нормировки. Погрешности нормировки δ_{norm} бета–спектров напрямую переносились на спектры антинейтрино, они даны в работах [33; 59] и для ²³⁵U составляют от 1.7% до 1.9%.

Для оценки статистической погрешности был использован метод многократного повторения процедуры конверсии с варьированием значений бета– спектров в пределах их погрешностей, распределённых по нормальному закону. Полученный таким образом усредненный спектр $\langle \rho_{\nu} \rangle$ антинейтрино брался как итоговый, а среднеквадратичный разброс значений $\Delta \rho_{\nu}$ отождествлялся с ошибкой процедуры конверсии δ_{stat} , порожденной статистической погрешностью исходных данных. На рисунке 3.1 в качестве примера приведены полученные описанным выше способом распределения значений спектра антинейтрино ²³⁵U для промежуточных энергий антинейтрино 2 МэВ, 4 МэВ, 6 МэВ и 8 МэВ, средние значения распределений и среднеквадратичные отклонения.

Помимо погрешностей δ_{stat} и δ_{norm} , порождаемых ошибками исходных дан-

ных, заметный вклад в погрешность процедуры преобразования оказывают разброс $\delta_{\rm WM}$ значений величины слабого магнетизма и ошибки $\delta_{\langle Z \rangle}$ эффективного заряда ядра $\langle Z \rangle(Q)$. Их вклад был рассчитан в работе [36] и составил по совокупности от сотых долей процента до 5% для разных энергий. Итоговая погрешность конвертированного спектра антинейтрино при заданной энергии оценивается как $\delta \rho_{\nu} = \sqrt{\delta_{\rm stat}^2 + \delta_{\rm norm}^2 + \delta_{\rm WM}^2 + \delta_{\langle Z \rangle}^2}$.

Рисунок 3.1 — распределения значений $\rho_{\nu}^{235}(E_{\nu})$ в единицах МэВ⁻¹ дел⁻¹ для энергий антинейтрино 2 МэВ (а), 4 МэВ (b), 6 МэВ (c), 8 МэВ (d), полученные многократной конверсией за 10000 итераций

На рисунке 3.2 представлено сравнение спектров антинейтрино продуктов деления 235 U и 238 U, полученных согласно процедуре HM [35; 36] (для 238 U мы дополнительно приводим сравнение со спектром TUM [33]) с теми же спектрами, полученным по процедуре KИ. Видно, что конвертированные спектры антинейтрино продуктов деления изотопов урана показывают существенную разницу, связанную, в основном, с переоценкой исходных кумулятивных бета–спектров. Аналогичным образом была проведена конверсия кумулятивных бета–спектров продуктов деления изотопов плутония, взятых из работы [59], результаты приведены в приложении. Сравнение спектров антинейтрино моделей КИ и HM для 239 Pu и 241 Pu, представленное на рисунке 3.3, показывает согласие двух моделей в пределах погрешностей при использовании одинаковых исходных бета–спектров.

Таким образом, модель КИ в целом предсказывает более мягкий спектр реакторных антинейтрино, чем модель HM.

Рисунок 3.2 — Сравнение спектров антинейтрино для $^{235}{\rm U}$ и $^{238}{\rm U}$ согласно моделям КИ, HM[35; 36] и TUM [33]

Рисунок 3.3 — Сравнение спектров антинейтрино для $^{239}{\rm Pu}$ и $^{241}{\rm Pu}$ согласно моделям КИ и ${\rm HM}[36]$

Аккуратное сравнение экспериментальных данных с теоретически предсказываемыми является сложной задачей. На данный момент достоверных измеренных кумулятивных спектров антинейтрино каждого из изотопов по отдельности не существует. Отметим, что предпринимаются попытки измерить спектр продуктов деления ²³⁵U на исследовательских реакторах с высокоообогащенным топливом, однако из-за малых объемов рабочего вещества детектора в подобных экспериментах, высокого фона и неопределенностях в функции отклика, полученные результаты нельзя считать надежными.

Ввиду вышеизложенных причин, достоверные результаты соответствуют крупным реакторным экспериментам, в которых регистрируется смесь спектральных потоков антинейтрино продуктов деления ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu. Наиболее статистически значимым из таких экспериментов является Daya Bay. Достоверные измеренные спектры Daya Bay представлены в работе [40] и ее приложении и соответствуют спектральной смеси в следующей пропорции средних долей делений изотопов урана и плутония:

$$\alpha^{235} : \alpha^{238} : \alpha^{239} : \alpha^{241} = 0.586 : 0.076 : 0.288 : 0.050.$$
(3.1)

С использованием уравнений (1.11) - (1.12), кумулятивных спектров реакторных антинейтрино КИ и средних долей делений (3.1), был построен предсказываемый в рамках модели КИ спектр позитронов ОБР, сравнение которого с экспериментальными данными [40] представлено на рисунке 3.4. Погрешности измеренных спектров соответствуют квадратным корням из соответствующих диагональных элементов ковариационной матрицы $\sqrt{\text{Cov}_{ii}}$, представленной в приложении [40].

Расчет по данным Daya Bay [40] дает следующие значения выходов ОБР:

$$\langle \sigma_{\rm KI} \rangle = (5.93 \pm 0.19) \times 10^{-43} [\, \text{cm}^2 \, \text{дел}^{-1}],$$

 $\langle \sigma_{\rm DB} \rangle = (5.92 \pm 0.14) \times 10^{-43} [\, \text{cm}^2 \, \text{дел}^{-1}].$ (3.2)

Предсказание модели КИ согласуется с данными Daya Bay в пределах погрешностей (1 σ) в области энергий 2 $\leq E_{\nu} < 5$ МэВ и 6.5 $< E_{\nu} \leq 8$ МэВ, что иллюстрирует рисунок 3.4. В диапазоне энергий 5 $\leq E_{\nu} \leq 6.5$ наблюдается локальное превышение наблюдаемого потока над предсказываемым — "bump"– эффект, который упоминался во введении.

Рисунок 3.4 — Отношение наблюдаемого спектра позитронов Daya Bay [40] к предсказываемому в рамках модели КИ

Отметим, что на данный момент причина "bump"–эффекта не установлена, в том числе и в модели КИ. Несмотря на это, с учетом вышеизложенного, можно сделать вывод, что в эксперименте Daya Bay в рамках предсказаний модели КИ реакторная антинейтринная аномалия в пределах погрешностей не наблюдается.

3.2 ДОКАЗАТЕЛЬСТВО УСТОЙЧИВОСТИ ОТНОШЕНИЙ ВЫХОДОВ ОБР

3.2.1 УСТОЙЧИВОСТЬ К ПОПРАВКАМ ПОДГОНОЧНЫХ СПЕКТРОВ

Для анализа устойчивости отношения выходов ОБР основных изотопов 235 U, 239 Pu и 241 Pu была проведена конверсия спектров группы ILL со всевозможными комбинациями поправок модели КИ к одиночному бета–спектру. По результатам каждой из конверсий по полученным спектрам антинейтрино были рассчитаны соответствующие спектры позитронов и выходы ОБР. Полученные результаты представлены в таблицах 3.1–3.3 для трех основных изотопов 235 U, 239 Pu и 241 Pu.

Таблица 3.1 — Выходы ОБР ²³⁵U в единицах 10⁻⁴³ см² дел⁻¹ для различных наборов поправок, используемых при реконструкции кумулятивного спектра антинейтрино, и их относительные отклонения.

Поправка Δ	$\sigma(\Delta)$	$\frac{\sigma(A) - \sigma(\Delta)}{\sigma(A)}$	$\frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)}$	$\frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}$
1	6.05	3.33%	_	_
(LC)	6.29	-0.30%	3.63%	3.64%
S	6.02	3.79%	-0.47%	-0.45%
G_{eta}	6.13	2.12%	1.24%	1.36%
$\delta_{ m WM}$	5.99	4.24%	-0.95%	-1.06%
(LC) S	6.25	0.15%	3.19%	3.18%
$(LC) G_{\beta}$	6.36	-1.67%	4.92%	4.85%
$(LC) \delta_{WM}$	6.21	0.76%	2.60%	2.58%
SG_{β}	6.10	2.58%	0.78%	0.76%
$S \delta_{ m WM}$	5.96	4.85%	-1.59%	-1.67%
$G_{\beta} \delta_{\rm WM}$	6.06	3.18%	0.16%	0.15%
$(LC) S G_{\beta}$	6.33	-1.06%	4.35%	4.24%
$(LC) S \delta_{WM}$	6.17	1.36%	2.00%	2.12%
$(LC) G_{\beta} \delta_{WM}$	6.29	-0.45%	3.77%	3.79%
$G_{\beta} S \delta_{\rm WM}$	6.03	3.64%	-0.31%	-0.30%
A	6.26	—	3.33%	_

Поправка Δ	$\sigma(\Delta)$	$\frac{\sigma(A) - \sigma(\Delta)}{\sigma(A)}$	$\frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)}$	$\frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}$
1	4.19	3.23%		
(LC)	4.34	-0.23%	3.46%	3.70%
S	4.17	3.70%	-0.48%	-0.46%
G_{β}	4.24	2.10%	1.18%	1.39%
$\delta_{ m WM}$	4.15	4.16%	-0.96%	-0.92%
(LC) S	4.32	0.23%	3.00%	3.00%
$(LC) G_{\beta}$	4.41	-1.85%	4.99%	4.85%
$(LC) \delta_{WM}$	4.30	0.69%	2.56%	2.77%
$S G_{\beta}$	4.21	2.77%	0.48%	0.69%
$S \delta_{\rm WM}$	4.12	4.85%	-1.70%	-1.85%
$G_{\beta} \delta_{\rm WM}$	4.20	3.00%	0.24%	0.23%
$(LC) S G_{\beta}$	4.37	-0.92%	4.12%	4.16%
$(LC) S \delta_{WM}$	4.27	1.39%	1.87%	2.10%
$(LC) G_{\beta} \delta_{WM}$	4.35	-0.46%	3.68%	3.70%
$G_{\beta} S \delta_{\rm WM}$	4.17	3.70%	-0.48%	-0.23%
A	4.33		3.23%	_

Таблица 3.2 — Выходы ОБР ²³⁹Ри в единицах 10⁻⁴³ см² дел⁻¹ для различных поправок и их комбинаций и их относительные отклонения.

Запись $\sigma(\Delta)$ здесь и далее означает, что данный выход ОБР был рассчитан по кумулятивному спектру реакторных антинейтрино, полученному конверсией соответствующего кумулятивного бета–спектра с учетом только поправки Δ к одиночной подгоночной бета–ветви. Так, $\Delta = 1$ соответствует конверсии без поправок (отметим, что функция Ферми в этом контексте поправкой не является и учитывается всегда). Аналогично, $\Delta = A$ соответствует включению всех поправок модели КИ, а запись $A - \Delta$ — что учтены все поправки, за исключением Δ .

35	

Поправка Δ	$\sigma(\Delta)$	$\frac{\sigma(A) - \sigma(\Delta)}{\sigma(A)}$	$\frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)}$	$\frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}$
1	5.82	3.16%		
(LC)	6.04	-0.50%	3.64%	3.66%
S	5.78	3.83%	-0.70%	-0.67%
G_{β}	5.88	2.16%	1.02%	1.16%
$\delta_{\rm WM}$	5.75	4.34%	-1.22%	-1.16%
(LC)S	6.00	0.17%	3.00%	3.16%
$(LC) G_{\beta}$	6.11	-1.67%	4.75%	4.83%
$(LC) \delta_{WM}$	5.97	0.67%	2.52%	2.66%
$S G_{\beta}$	5.85	2.66%	0.51%	0.67%
$S \delta_{\rm WM}$	5.72	4.83%	-1.75%	-1.67%
$G_{\beta} \delta_{\rm WM}$	5.82	3.16%	0%	0.17%
$(LC) S G_{\beta}$	6.08	-1.16%	4.28%	4.34%
$(LC) S \delta_{WM}$	5.94	1.16%	2.02%	2.16%
$(LC) G_{\beta} \delta_{WM}$	6.05	-0.67%	3.80%	3.83%
$G_{\beta} S \delta_{\rm WM}$	5.79	3.66%	-0.52%	-0.50%
A	6.01	_	3.16%	_

Таблица 3.3 — Выходы ОБР ²⁴¹Ри в единицах 10⁻⁴³ см² дел⁻¹ для различных поправок и их комбинаций и их относительные отклонения.

Введем в рассмотрение функционал

$$h(\Delta) = \frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)} = \frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}.$$
(3.3)

Второе равенство в данном выражении выполняется с хорошей точностью согласно расчетам, представленным в таблицах 3.1–3.3. Основными свойствами функционала $h(\Delta)$ является его аддитивность по поправкам, то есть выполнение равенства

$$h(\Delta_1 \Delta_2) = h(\Delta_1) + h(\Delta_2), \qquad (3.4)$$

и независимость от выбранного изотопа. Обращаем внимание, что оба представленных свойства выполняются с точностью долей процента. С этой же точностью выполняется следующая цепочка равенств:

$$\sigma(\Delta_1 \Delta_2) = \sigma(\Delta_1) \times [1 + h(\Delta_2)] = \sigma(\Delta_2) \times [1 + h(\Delta_1)] =$$

= $\sigma(1) \times [1 + h(\Delta_1 \Delta_2)] = \sigma(1) \times [1 + h(\Delta_1) + h(\Delta_2)]$ (3.5)

Отсюда немедленно следует устойчивость отношения выходов ОБР:

$$\frac{\sigma^X(\Delta_1\Delta_2)}{\sigma^Y(\Delta_1\Delta_2)} = \frac{\sigma^X(\Delta_1)}{\sigma^Y(\Delta_1)} \times \frac{1+h(\Delta_2)}{1+h(\Delta_2)} = \frac{\sigma^X(\Delta_2)}{\sigma^Y(\Delta_2)} \times \frac{1+h(\Delta_1)}{1+h(\Delta_1)} = \frac{\sigma^X(1)}{\sigma^Y(1)}, \quad (3.6)$$

Данный вывод подтвержден расчетами, представленными в таблице 3.4 и проиллюстрированными на рисунке 3.5.

Таблица 3.4 — Выходы ОБР основных изотопов в единицах 10⁻⁴³ см² дел⁻¹ для различных поправок и их комбинаций и их относительные отклонения.

Поправка Δ	σ^{235}	σ^{239}	σ^{241}	$\sigma^{235}/\sigma^{239}$	$\sigma^{235} / \sigma^{241}$
1	6.05	4.19	5.82	1.444	1.040
(LC)	6.29	4.34	6.04	1.445	1.041
S	6.02	4.17	5.78	1.443	1.042
G_{β}	6.13	4.24	5.88	1.446	1.043
$\delta_{ m WM}$	5.99	4.15	5.75	1.443	1.042
(LC) S	6.25	4.32	6.00	1.447	1.042
$(LC) G_{\beta}$	6.36	4.41	6.11	1.442	1.041
$(LC) \delta_{WM}$	6.21	4.30	5.97	1.444	1.040
SG_{β}	6.10	4.21	5.85	1.449	1.043
$S \delta_{\rm WM}$	5.96	4.12	5.72	1.447	1.042
$G_{\beta} \delta_{\rm WM}$	6.06	4.20	5.82	1.443	1.041
$(LC) S G_{\beta}$	6.33	4.37	6.08	1.449	1.041
$(LC) S \delta_{WM}$	6.17	4.27	5.94	1.445	1.040
$(LC) G_{\beta} \delta_{WM}$	6.29	4.35	6.05	1.446	1.040
$G_{\beta} S \delta_{\rm WM}$	6.03	4.17	5.79	1.446	1.041
A	6.26	4.33	6.01	1.446	1.042

Рисунок 3.5 — Отклонения отношений выходов ОБР от их среднего значения для разных наборов поправок

Средние значения величин $\langle \sigma^{235}/\sigma^{239} \rangle = 1.44, \langle \sigma^{235}/\sigma^{241} \rangle = 1.04$, а относительный разброс для обоих случаев составляет 0.2%. Отметим, что погрешности этих величин составляют $3\% \gg 0.2\%$. Таким образом, отношение выходов ОБР является устойчивой величиной относительно вариаций в процедуре конверсии, связанных с учетом дополнительных поправок, которые, как было показано, вносят вклад независимо друг от друга.

3.2.2 УСТОЙЧИВОСТЬ К ВКЛАДУ ЗАПРЕЩЕННЫХ ПЕРЕХОДОВ

Для анализа вклада запрещенных переходов в конвертированные спектры антинейтрино и выходы ОБР форма используемых синтетических подгоночных спектров модели КИ (2.9) была модернизирована следующим образом:

$$\rho_{\beta}(T_{\beta}) = \rho_{\beta}^{0}(T_{\beta}) \times \sum_{j} \alpha_{j}(Q) C_{j}(T_{\beta}, Q) (1 + \delta_{\text{WM}}^{(j)}).$$
(3.7)

Здесь индекс j нумерует тип запрещенного перехода (в настоящей работе мы рассматриваем гамов-теллеровские переходы первой степени запрета, которые вносят до 30% вклада в реальный реакторный спектр), C_j — фактор формы, $\delta_{\rm WM}^{(i)}$ — поправка, учитывающая слабый магнетизм для данного запрещенного перехода, $\alpha_j(Q)$ — доля запрещенных переходов j-ого типа на данном энергетическом интервале. В таблице 3.5 представлены используемые аналитические выражения для факторов формы $C_j(T_\beta, Q)$ и поправок на слабый магнетизм, данные в [37; 39; 60]. Входящие в факторы формы $C_j(T_\beta, Q)$ величины \tilde{F} называются Ферми-подобными функциями, их явный вид можно найти, например, в работе [60]. Отметим, что в (3.7) входят и разрешенные переходы, для которых фактор формы C = 1, а поправка $\delta_{\rm WM}$ определена выше (см. формулу 2.25).

В работе [39] было предложено определять доли $\alpha_j(Q)$ с использованием ядерных баз данных (ЯБД) и для каждого типа запрета выбирать индивидуальную параметризацию эффективного заряда $\langle Z \rangle(Q)$. Этот подход осложняется неполнотой ЯБД (в частности, основные неопределенности вызваны переходами GT 0⁻ и GT 1⁻).

В настоящей работе для анализа устойчивости отношений спектров антинейтрино и выходов ОБР был использован более общий подход: на каждом

Таблица 3.5 — Факторы формы и поправки на слабый магнетизм для однократно запрещенных гамов–теллеровских переходов.

ΔJ^{π}	Фактор формы $C(E_{\beta}, E_{\nu})$	Слабый магнетизм δ_{WM}
0-	$E_{\nu}^{2} + p_{\beta}^{2} \tilde{F}_{p_{1/2}} + 2p_{\beta} E_{\nu} \tilde{F}_{sp_{1/2}}$	0
1-	$E_{\nu}^{2} + \frac{2}{3}p_{\beta}^{2}\tilde{F}_{p_{1/2}} + \frac{1}{3}p_{\beta}^{2}\tilde{F}_{p_{3/2}} - \frac{4}{3}p_{\beta}E_{\nu}\tilde{F}_{sp_{1/2}}$	$\frac{\mu_{\nu} - 1/2}{m_N g_A} \times \frac{(E_{\beta} v_{\beta}^2 - E_{\nu})(p_{\beta}^2 + E_{\nu}^2) + 2v_{\beta}^2 E_{\beta} E_{\nu}(E_{\nu} - E_e)/3}{p_{\beta}^2 + E_{\nu}^2 - 4v_{\beta}^2 E_{\nu} E_{\beta}/3}$
2-	$E_{\nu}^2 + p_{\beta}^2 \tilde{F}_{p_{1/2}}$	$\frac{3}{5} \frac{\mu_{\nu} - 1/2}{m_N g_A} \times \frac{(E_{\beta} v_{\beta}^2 - E_{\nu})(p_{\beta}^2 + E_{\nu}^2) + 2v_{\beta}^2 E_{\beta} E_{\nu} (E_{\nu} - E_e)/3}{p_{\beta}^2 + E_{\nu}^2}$

энергетическом отрезке веса $\alpha_j(Q)$ разыгрывались случайным образом (допускались заведомо нереалистичные варианты, в частности, описание всего кумулятивного бета–спектра только запрещенными переходами). С использованием полученных таким образом долей запрета и уравнения (3.7) производилась аппроксимация данных ILL [59] и реконструкция спектров антинейтрино для изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu.

На рисунке 3.6 представлена выборка отношений кумулятивных спектров антинейтрино из 500 итераций описанной процедуры. Рисунок 3.7 иллюстрирует распределения значений отношений соответствующих выходов обратного бета–распада.

Рисунок 3.6 — Отношения кумулятивных спектров антинейтрино продуктов деления ²³⁵U, ²³⁹Pu и ²⁴¹Pu для различных случайных долей запрещенных переходов $\alpha_j(Q)$. Представлена выборка из 500 итераций

Рисунок 3.7 — Отношения выходов ОБР изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu для различных случайных долей запрещенных переходов $\alpha_j(Q)$. Представлена выборка из 500 итераций

Полученный результат свидетельствует о том, что отношения выходов ОБР устойчиво к наличию в подгоночных спектрах смеси запрещенных переходов — разброс значений $\sigma^{235}/\sigma^{239}$ и $\sigma^{235}/\sigma^{241}$ составляет доли процента.

ЗАКЛЮЧЕНИЕ

В настоящей работе разработана модель конверсии кумулятивных бетаспектров продуктов деления изотопов урана и плутония в соответствующие кумулятивные спектры антинейтрино, описаны используемые допущения и приближения, предложена и реализована процедура многократной конверсии для расчета погрешностей кумулятивных спектров антинейтрино и анализа их устойчивости к возмущениям процедуры реконструкции и начальных данных. Получены следующие результаты, выносимые на защиту:

- Рассчитаны спектры реакторных антинейтрино продуктов деления изотопов урана \(\rho_{\nu_v, KI}^{235}\) и \(\rho_{\nu_v, KI}^{238}\) конверсией кумулятивных бета-спектров, измеренных группой НИЦ «Курчатовский институт» [41; 58], а также кумулятивные спектры антинейтрино продуктов деления изотопов плутония \(\rho_{\nu_v, KI}^{239}\) и \(\rho_{\nu_v, KI}^{241}\), реконструированные из данных группы ILL [59]; полученный результат формирует новую модель реакторных спектров модель Курчатовского института (КИ);
- Проверено согласие предсказаний модели КИ с наиболее надежными экспериментальными данными [40]. Анализ, данный в настоящей работе и в работе [42], показывает, что представленная модель КИ позволяет решить проблему реакторной антинейтринной аномалии [9], т.е. объяснить наблюдаемый 5% дефицит общей скорости счета в реакторных нейтринных экспериментах;
- Разработан и реализован метод многократной конверсии, с использованием которого, в частности, были рассчитаны погрешности конвертированных спектров антинейтрино и проведен анализ устойчивости процедуры реконструкции:
 - Показано, что поправки к форме одиночных подгоночных синтетических бета-ветвей вносят вклад в кумулятивные спектры антинейтрино и соответствующие им выходы ОБР аддитивным и независимым образом с точностью долей процента;

- Показана устойчивость отношений кумулятивных спектров антинейтрино к возмущениям формы одиночных подгоночных бета–спектров, в том числе за счет введения в процедуру подгонки смеси запрещенных синтетических бета–переходов первой степени запрета;

Объяснение природы реакторной антинейтринной аномалии решает одну из основных проблем физики реакторных антинейтрино и позволяет установить более точные ограничения на параметры проявлений новой физики (в частности, на сечение взаимодействия стерильных нейтрино с веществом, параметры смешивания известных сортов нейтрино со стерильными и т.д.) в реакторных экспериментах. С использованием кумулятивных спектров антинейтрино модели КИ в будущем планируется перерасчет средней энергии, выделяемой в активной зоне ядерного реактора при одном делении тяжелого изотопа, что определяет, в том числе, прикладное приложение настоящей работы. Доказанная устойчивость отношений выходов обратного бета–распада и их зависимость только от соответствующих отношений кумулятивных бета–спектров позволяет, в принципе, извлечь из экспериментальных данных более точное значение величины σ^{235} и, с другой стороны, открывает новые возможности для решения задач мониторинга работы ядерного реактора нейтринным методом.

Автор выражает глубокую признательность М.Д. Скорохватову и О.А. Титову за помощь на всех этапах выполнения настоящей работы, содержательные обсуждения, полезную и конструктивную критику и профессиональный, направляющий подход в обучении и в формировании у автора научной парадигмы. Автор также благодарит коллектив отделения физики нейтрино НИЦ «Курчатовский Институт» за доброжелательную атмосферу, способствующую плодотворной работе и мотивирующую к научно–исследовательской деятельности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Reines F., Cowan C. L. Detection of the free neutrino // Phys. Rev. 1953. — Vol. 92. — P. 830–831.
- Constraints on θ₁₃ from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND / A. Gando [et al.] // Phys. Rev. D. 2011. Vol. 83. P. 052002.
- Indication of Reactor *v
 _e* Disappearance in the Double Chooz Experiment /
 Y. Abe [et al.] // Phys. Rev. Lett. 2012. Vol. 108. P. 131801.
- Observation of electron-antineutrino disappearance at Daya Bay / F. P. An [et al.] // Phys. Rev. Lett. — 2012. — Vol. 108. — P. 171803.
- Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment / J. K. Ahn [et al.] // Phys. Rev. Lett. — 2012. — Vol. 108. — P. 191802.
- Sterile Neutrino Search at the NEOS Experiment / Y. J. Ko [et al.] // Phys. Rev. Lett. — 2017. — Vol. 118, no. 12. — P. 121802.
- Schoppmann S. Status of Anomalies and Sterile Neutrino Searches at Nuclear Reactors // Universe. — 2021. — Vol. 7, no. 10. — P. 360.
- 8. *Danilov M.* Review of sterile neutrino searches at very short-baseline reactor experiments. 2022. arXiv: 2203.03042 [hep-ex].
- The Reactor Antineutrino Anomaly / G. Mention [et al.] // Phys. Rev. D. — 2011. — Vol. 83. — P. 073006.
- Search for Neutrino Oscillations at a Fission Reactor / H. Kwon [et al.] // Phys. Rev. D. — 1981. — Vol. 24. — P. 1097–1111.
- Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay / F. P. An [et al.] // Chin. Phys. C. — 2017. — Vol. 41, no. 1. — P. 013002.

- 12. Possible origins and implications of the shoulder in reactor neutrino spectra /
 A. C. Hayes [et al.] // Phys. Rev. D. 2015. Vol. 92, no. 3. P. 033015.
- Huber P. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum // Phys. Rev. Lett. — 2017. — Vol. 118, no. 4. — P. 042502.
- Mikaelian L. A. Neutrino laboratory in the atomic plant // in Proceedings of the International Conference "Neutrino 77". — 1978. — Vol. 2. — P. 383– 385.
- Borovoi A. A., Mikaelyan L. A. Possibilities of the practical use of neutrinos // Soviet Atomic Energy. 1978. Vol. 44. P. 589–592.
- Neutrino method remote measurement of reactor power and power output / Y. V. Klimov [et al.] // Atomic Energy. — 1994. — Vol. 76. — P. 123–127.
- 17. First ground-level laboratory test of the two-phase xenon emission detector RED-100 / D. Y. Akimov [et al.] // JINST. — 2020. — Vol. 15, no. 02. — P02020.
- iDREAM: Industrial Detector of REactor Antineutrinos for Monitoring at Kalinin nuclear power plant / A. Abramov [et al.]. — 2021. — arXiv: 2112.09372 [physics.ins-det].
- Danilov M., Skrobova N. New results from the DANSS experiment // PoS. —
 2022. Vol. EPS-HEP2021. P. 241.
- Christensen E., Huber P., Jaffke P. Antineutrino reactor safeguards a case study. — 2013. — arXiv: 1312.1959 [physics.ins-det].
- 21. Neutrino detectors as tools for nuclear security / A. Bernstein [et al.] // Rev.
 Mod. Phys. 2020. Vol. 92. P. 011003.
- 22. Neutrino Physics with JUNO / F. An [et al.] // J. Phys. G. 2016. Vol. 43, no. 3. P. 030401.
- Hayes A. C., Vogel P. Reactor Neutrino Spectra // Ann. Rev. Nucl. Part. Sci. — 2016. — Vol. 66. — P. 219–244.
- 24. Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes / M. Estienne [et al.] // Phys. Rev. Lett. — 2019. — Vol. 123, no. 2. — P. 022502.

- 25. The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes / J. Hardy [et al.] // Physics Letters B. 1977. Vol. 71, no. 2. P. 307–310.
- 26. Mougeot X. Reliability of usual assumptions in the calculation of β and ν spectra // Phys. Rev. C. 2015. Vol. 91, no. 5. P. 055504. [Erratum: Phys.Rev.C 92, 059902 (2015)].
- 27. Absolute measurement of the beta spectrum from ²³⁵U fission as a basis for reactor antineutrino experiments / K. Schreckenbach [et al.] // Phys. Lett. B. 1981. Vol. 99. P. 251–256.
- Von Feilitzsch F., Hahn A. A., Schreckenbach K. Experimental beta-spectra from ²³⁹Pu and ²³⁵U thermal neutron fission products and their correlated antineutrino spectra // Phys. Lett. B. — 1982. — Vol. 118. — P. 162–166.
- 29. Determination of the antineutrino spectrum from ²³⁵U thermal neutron fission products up to 9.5 MeV / K. Schreckenbach [et al.] // Phys. Lett. B. 1985. Vol. 160. P. 325–330.
- Anti-neutrino Spectra From ²⁴¹Pu and ²³⁹Pu Thermal Neutron Fission Products / A. A. Hahn [et al.] // Phys. Lett. B. — 1989. — Vol. 218. — P. 365– 368.
- 31. The double focusing iron-core electron-spectrometer "BILL" for high resolution (n, e) measurements at the high flux reactor in Grenoble / W. Mampe [et al.] // Nuclear Instruments and Methods. 1978. Vol. 154, no. 1. P. 127–149.
- Reactor Anti-neutrino Spectra and Their Application to Anti-neutrino Induced Reactions. 2. / P. Vogel [et al.] // Phys. Rev. C. — 1981. — Vol. 24. — P. 1543–1553.
- 33. Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U / N. Haag [et al.] // Phys. Rev. Lett. — 2014. — Vol. 112, no. 12. — P. 122501.
- 34. Vogel P. Conversion of electron spectrum associated with fission into the antineutrino spectrum // Phys. Rev. C. 2007. Vol. 76. P. 025504.
- Improved Predictions of Reactor Antineutrino Spectra / T. A. Mueller [et al.] // Phys. Rev. C. 2011. Vol. 83. P. 054615.

- 36. Huber P. On the determination of anti-neutrino spectra from nuclear reactors // Phys. Rev. C. — 2011. — Vol. 84. — P. 024617. — [Erratum: Phys.Rev.C 85, 029901 (2012)].
- 37. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly /
 A. C. Hayes [et al.] // Phys. Rev. Lett. 2014. Vol. 112. P. 202501.
- 38. First-forbidden transitions in the reactor anomaly / L. Hayen [et al.] // Phys.
 Rev. C. 2019. Vol. 100, no. 5. P. 054323.
- Li Y.-.-F., Zhang D. New Realization of the Conversion Calculation for Reactor Antineutrino Fluxes // Phys. Rev. D. — 2019. — Vol. 100, no. 5. — P. 053005.
- 40. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay /
 F. P. An [et al.] // Phys. Rev. Lett. 2016. Vol. 116, no. 6. —
 P. 061801. [Erratum: Phys.Rev.Lett. 118, 099902 (2017)].
- 41. Копейкин В., Панин Ю., Сабельников А. Измерение отношения кумулятивных спектров бета-частиц от продуктов деления ²³⁵U и ²³⁹Pu для решения задач физики реакторных антинейтрино // Ядерная физика. 2021. Т. 84. С. 3—11.
- 42. Reactor antineutrino anomaly in light of recent flux model refinements / C.
 Giunti [et al.] // Phys. Lett. B. 2022. Vol. 829. P. 137054.
- 43. Копейкин В. И., Скорохватов М. Д. Особенности протекания реакции обратного бета-распада на протоне в потоке антинейтрино ядерного реактора // Ядерная физика. 2017. Т. 80. С. 142—150.
- 44. Kopeikin V. I. Flux and spectrum of reactor antineutrinos // Phys. Atom.
 Nucl. 2012. Vol. 75. P. 143–152.
- 46. Vogel P., Beacom J. F. Angular distribution of neutron inverse beta decay, anti-neutrino(e) + p -> e+ + n // Phys. Rev. D. 1999. Vol. 60. P. 053003.
- 47. Strumia A., Vissani F. Precise quasielastic neutrino/nucleon cross-section // Phys. Lett. B. — 2003. — Vol. 564. — P. 42–54.

- Impact of Fission Neutron Energies on Reactor Antineutrino Spectra / B. R.
 Littlejohn [et al.] // Phys. Rev. D. 2018. Vol. 97, no. 7. P. 073007.
- 49. Wilkinson D. H. Evaluation of Beta-Decay II. Finite mass and size effects // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 1990. — Vol. 290, no. 2. — P. 509–515.
- 50. Elton L. R. B. A semi-empirical formula for the nuclear radius // Phys. Atom. Nucl. 1958. Vol. 5. P. 173–178.
- 51. High precision analytical description of the allowed β spectrum shape / L. Hayen [et al.] // Rev. Mod. Phys. — 2018. — Vol. 90, no. 1. — P. 015008.
- 52. Behrens H., Jänecke J. Numerical Tables for Beta-Decay and Electron Capture. Vol. 4 / ed. by H. Schopper. Springer, 1969. (Landolt-Boernstein Group I Elementary Particles, Nuclei and Atoms).
- 53. Behrens H., Bühring W. Electron radial wave functions and nuclear betadecay. — Oxford : Clarendon press, 1982.
- Sirlin A. General Properties of the Electromagnetic Corrections to the Beta Decay of a Physical Nucleon // Phys. Rev. — 1967. — Vol. 164. — P. 1767– 1775.
- 55. Sirlin A. Radiative Correction to the $\bar{\nu}_e(\nu_e)$ Spectrum in β -Decay // Phys. Rev. D. 2011. Vol. 84. P. 014021.
- 56. Batkin I. S., Sundaresan M. K. Effect of radiative corrections on the solar neutrino spectrum // Phys. Rev. D. 1995. Vol. 52. P. 5362–5365.
- 57. Wang X. B., Hayes A. C. Weak magnetism correction to allowed β decay for reactor antineutrino spectra // Phys. Rev. C. 2017. Vol. 95, no. 6. P. 064313.
- 58. Kopeikin V., Skorokhvatov M., Titov O. Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235 U and 239 Pu β spectra // Phys. Rev. D. 2021. Vol. 104, no. 7. P. L071301.
- 59. Re-publication of the data from the BILL magnetic spectrometer: The cumulative β -spectra of the fission products of ²³⁵U, ²³⁹Pu and ²⁴¹Pu / N. Haag [et al.]. 2014.

 Štefánik D., Dvornický R., Šimkovic F. Reactor antineutrino spectra and forbidden beta decays // AIP Conf. Proc. / ed. by O. Civitarese, I. Stekl, J. Suhonen. — 2017. — Vol. 1894, no. 1. — P. 020022.

ПРИЛОЖЕНИЕ

СПЕКТРЫ РЕАКТОРНЫХ АНТИНЕЙТРИНО МОДЕЛИ КИ

Кумулятивные спектры антинейтрино продуктов деления изотопов урана и плутония в единицах МэВ⁻¹ дел⁻¹. Ошибки даны на уровне достоверности 1σ (68%).

$E_{\nu}, M \mathfrak{s} B$	ρ_{ν}^{235}	ρ_{ν}^{238}	ρ_{ν}^{239}	ρ_{ν}^{241}
2.00	1.24 ± 0.02	1.53 ± 0.05	1.09 ± 0.03	1.26 ± 0.03
2.25	1.06 ± 0.02	1.35 ± 0.05	$(9.3 \pm 0.3) \times 10^{-1}$	1.08 ± 0.03
2.50	$(8.67 \pm 0.17) \times 10^{-1}$	1.18 ± 0.04	$(7.1 \pm 0.2) \times 10^{-1}$	$(9.0 \pm 0.2) \times 10^{-1}$
2.75	$(7.29 \pm 0.12) \times 10^{-1}$	1.04 ± 0.04	$(6.1 \pm 0.2) \times 10^{-1}$	$(7.68 \pm 0.18) \times 10^{-1}$
3.00	$(6.11 \pm 0.11) \times 10^{-1}$	$(9.0 \pm 0.4) \times 10^{-1}$	$(5.10 \pm 0.13) \times 10^{-1}$	$(6.45 \pm 0.17) \times 10^{-1}$
3.25	$(5.20 \pm 0.09) \times 10^{-1}$	$(7.5 \pm 0.3) \times 10^{-1}$	$(4.09 \pm 0.11) \times 10^{-1}$	$(5.32 \pm 0.15) \times 10^{-1}$
3.50	$(4.31 \pm 0.09) \times 10^{-1}$	$(6.3 \pm 0.3) \times 10^{-1}$	$(3.18 \pm 0.11) \times 10^{-1}$	$(4.37 \pm 0.15) \times 10^{-1}$
3.75	$(3.43 \pm 0.08) \times 10^{-1}$	$(5.1 \pm 0.2) \times 10^{-1}$	$(2.70 \pm 0.10) \times 10^{-1}$	$(3.44 \pm 0.12) \times 10^{-1}$
4.00	$(2.78 \pm 0.06) \times 10^{-1}$	$(4.2 \pm 0.2) \times 10^{-1}$	$(1.96 \pm 0.08) \times 10^{-1}$	$(2.79 \pm 0.09) \times 10^{-1}$
4.25	$(2.19 \pm 0.05) \times 10^{-1}$	$(3.33 \pm 0.14) \times 10^{-1}$	$(1.57 \pm 0.08) \times 10^{-1}$	$(2.19 \pm 0.07) \times 10^{-1}$
4.50	$(1.70 \pm 0.04) \times 10^{-1}$	$(2.64 \pm 0.12) \times 10^{-1}$	$(1.11 \pm 0.05) \times 10^{-1}$	$(1.64 \pm 0.06) \times 10^{-1}$
4.75	$(1.29 \pm 0.04) \times 10^{-1}$	$(2.03 \pm 0.10) \times 10^{-1}$	$(8.3 \pm 0.4) \times 10^{-2}$	$(1.23 \pm 0.05) \times 10^{-1}$
5.00	$(1.04 \pm 0.03) \times 10^{-1}$	$(1.62 \pm 0.08) \times 10^{-1}$	$(6.1 \pm 0.4) \times 10^{-2}$	$(9.6 \pm 0.4) \times 10^{-2}$
5.25	$(8.2 \pm 0.3) \times 10^{-2}$	$(1.26 \pm 0.07) \times 10^{-1}$	$(4.8 \pm 0.2) \times 10^{-2}$	$(7.3 \pm 0.4) \times 10^{-2}$
5.50	$(6.1 \pm 0.2) \times 10^{-2}$	$(9.7 \pm 0.6) \times 10^{-2}$	$(3.5 \pm 0.3) \times 10^{-2}$	$(5.5 \pm 0.3) \times 10^{-2}$
5.75	$(4.81 \pm 0.13) \times 10^{-2}$	$(7.3 \pm 0.5) \times 10^{-2}$	$(2.88 \pm 0.18) \times 10^{-2}$	$(4.0 \pm 0.2) \times 10^{-2}$
6.00	$(3.67 \pm 0.13) \times 10^{-2}$	$(5.3 \pm 0.4) \times 10^{-2}$	$(1.87 \pm 0.19) \times 10^{-2}$	$(2.98 \pm 0.18) \times 10^{-2}$
6.25	$(2.72 \pm 0.08) \times 10^{-2}$	$(3.8 \pm 0.4) \times 10^{-2}$	$(1.23 \pm 0.12) \times 10^{-2}$	$(2.00 \pm 0.13) \times 10^{-2}$
6.50	$(2.04 \pm 0.06) \times 10^{-2}$	$(2.9 \pm 0.4) \times 10^{-2}$	$(9.9 \pm 1.4) \times 10^{-3}$	$(1.54 \pm 0.15) \times 10^{-2}$
6.75	$(1.52 \pm 0.05) \times 10^{-2}$	$(2.6 \pm 0.3) \times 10^{-2}$	$(8.2 \pm 1.4) \times 10^{-3}$	$(1.06 \pm 0.12) \times 10^{-2}$
7.00	$(1.08 \pm 0.04) \times 10^{-2}$	$(2.0 \pm 0.3) \times 10^{-2}$	$(4.5 \pm 0.8) \times 10^{-3}$	$(7.72 \pm 0.9) \times 10^{-3}$
7.25	$(6.7 \pm 0.3) \times 10^{-3}$	$(1.1 \pm 0.2) \times 10^{-2}$	$(3.4 \pm 1.1) \times 10^{-3}$	$(4.5 \pm 0.7) \times 10^{-3}$
7.50	$(4.41 \pm 0.18) \times 10^{-3}$	$(7\pm2)\times10^{-3}$	$(2.2 \pm 0.7) \times 10^{-3}$	$(2.9 \pm 0.5) \times 10^{-3}$
7.75	$(2.76 \pm 0.16) \times 10^{-3}$	$(4.6 \pm 1.4) \times 10^{-3}$	$(1.0 \pm 0.4) \times 10^{-3}$	$(1.9 \pm 0.5) \times 10^{-3}$
8.00	$(1.47 \pm 0.09) \times 10^{-3}$	$(2.9 \pm 0.9) \times 10^{-3}$	$(4.4 \pm 1.8) \times 10^{-4}$	$(9 \pm 3) \times 10^{-4}$