Изучение отклика детектора iDREAM в потоке антинейтрино на Калининской АЭС

Выполнил: Растимешин А.А.

Научный руководитель: к.ф.-м.н. Е.А. Литвинович

2022

Применение антинейтринного излучения от ядерного реактора

Какие задачи можно решать с помощью антинейтринного излучения?

- 1. Выявление несанкционированных режимов работы реактора, в т.ч. наработку оружейного плутония
- 2. Дистанционный контроль энерговыработки реакторов
- 3. Мониторинг отработавшего ядерного топлива

 $\bar{\nu}_e + p \rightarrow n + e^+$

Реакция обратного бета-распада

При регистрации антинейтрино используется метод задержанных совпадений: сначала регистрируется позитрон, после чего регистрируется нейтрон. По энергии позитрона восстанавливается энергия антинейтрино, регистрация нейтрона служит подтверждением того, что произошёл обратный бета-распад.

Цель и задачи работы

Цель: изучение отклика детектора iDREAM, установленного в потоке антинейтрино

на энергоблоке №3 Калининской АЭС.

Задачи:

- Изучение энергетической шкалы детектора на основе калибровок радиоактивными источниками.
- Измерение времени захвата нейтрона в содержащем гадолиний сцинтилляторе детектора.
- Отбор событий взаимодействия антинейтрино, измерение скорости счета антинейтрино детектором.

Устройство детектора iDREAM

Расположение детектора iDREAM на третьем энергоблоке КАЭС. Активная зона реактора помечена цифрой «1».

Общий вид детектора iDREAM

Изучение энергетической шкалы

При анализе данных наблюдается «дрейф» энергетической шкалы, как результат изменения температуры сцинтиллятора.

Проведена компенсация эффекта «дрейфа» по пику полного поглощения гамма-квантов источника ⁶⁰Со. <u>Результат</u>: уменьшение «дрейфа» шкалы с 15.8% до 3.6% (в 4.4 раза)

Изучение сцинтилляционного дефекта

Используемые для калибровок источники:

- ¹³⁷Cs (Е_γ = 662 кэВ)
- ⁵⁴Mn (Е = 835 кэВ)
- ⁶⁵Zn (Е_γ = 1115 кэВ)
- ²⁵²Cf (по реакции (n, γ) на водороде, E_v = 2223 кэВ)
- ⁶⁰Co (E_{v1} = 1173 кэВ, E_{v2} = 1332 кэВ)

В результате фитирования найденных относительных изменений отклика получаем функцию:

^F(E_γ) =
$$\frac{p_0 \cdot E_{\gamma}}{1 + p_1 \cdot E_{\gamma}}$$
, где p₀ = p₁ = (1.1 ± 0.1)·10⁻² кэ

Относительный отклик детектора iDREAM

Определение времени захвата нейтрона в гадолиниевом сцинтилляторе

Eff = $1 - e^{t/\tau}$, где τ -- время захвата нейтрона;

T = (33.0 ± 0.3) мкс

Распределение времен захвата нейтронов в окне 150 мкс после регистрации мгновенных γ-квантов (синий) при распаде ²⁵²Cf. Зеленым цветом показано распределение случайных совпадений.

Регистрация антинейтринного излучения. Отбор событий.

$$\bar{\nu}_e + p \rightarrow n + e^+$$

Реакция обратного бета-распада

Условия отбора событий:

- Энергия мгновенного (позитронного) события лежит в пределах (3 ÷ 8) МэВ
- Энергия задержанного (нейтронного) события лежит в пределах (5 ÷ 10) МэВ
- Время между событиями меньше 100 мкс
- В течение 100 мкс до первого события и 100 мкс после второго не зарегистрировано ни одного события

Регистрация антинейтринного излучения. Результаты

За 77 суток в период с 4 августа 2021 по 20 октября 2021 отобрано:

- 40.99 суток "живого" времени
- 115005 событий-кандидатов на обратный бета-распад
- 44520 событий-пар случайных совпадений
- 115005 44520 = 70485 событий кандидатов за вычетом случайных совпадений.

Распределение времён между событиями в парах-кандидатах на взаимодействие антинейтрино по реакции ОБР (синий), в парахслучайных совпадениях (черный) и их разность (красный) 9

Регистрация антинейтринного излучения. Результаты

- 11-12 октября: Падение
 мощности реактора: с 3.1 до
 0.02 ГВт (почти на 100%)
- Падение скорости счета детектора с (1720±143) до (276±155) событий в сутки (~84%). Большая ошибка скорости счета при выключенном реакторе
 - объясняется малой статистикой

Регистрация антинейтринного излучения. Результаты

- Средняя скорость счета при включенном реакторе R_{ON} = (1720 ± 12) соб/сутки
- Средняя скорость счета
 при остановленном реакторе
 R_{OFF} = (276 ± 80) соб/сутки
- Средняя скорость счета антинейтринных событий: R_{IBD} = R_{ON} – R_{OFF} = (1444 ± 80) соб/сутки

Заключение

В ходе работы получены следующие основные результаты:

- Изучена энергетическая шкала детектора iDREAM. Показано, что шкала детектора меняется вследствие колебаний температуры сцинтиллятора. Для компенсации «дрейфа» энергетической шкалы разработан алгоритм коррекции по калибровкам ⁶⁰Со. Данный алгоритм позволяет снизить эффект от дрейфа в 4.4 раза.
- Изучен сцинтилляционный дефект. Отклик детектора в области энергий (0.66 ÷ 2.22) МэВ описан

функцией f(E_y) = $\frac{p_0 \cdot E_y}{1 + p_1 \cdot E_y}$

- Измерено время захвата нейтрона в содержащем металлический гадолиний сцинтилляторе, которое составило τ = (33.0 ± 0.3) мкс
- Изучен отклик детектора в потоке реакторных антинейтрино, достоверно зарегистрированы взаимодействия антинейтрино. Средняя скорость счета антинейтринных событий при включенном реакторе составила R_{IBD} = (1444 ± 80) событий в сутки.

Спонтанное деление калифорния-252

	²⁵² Cf ^b	
	Consensus	Standard Deviation
$\begin{array}{c} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \\ P_{7} \\ P_{8} \\ P_{9} \\ P_{10} \\ \langle \nu(\nu-1) \rangle \\ \langle \nu(\nu-1) (\nu-2) \rangle \\ \langle \nu^{2} \rangle \\ \langle \nu^{2} \rangle - \langle \nu \rangle^{2} \\ \langle \nu(\nu-1) \rangle / \langle \nu \rangle^{2} \end{array}$	$\begin{array}{c} 0.0021767\\ 0.0259869\\ 0.1251188\\ 0.2740459\\ 0.3050812\\ 0.1854741\\ 0.0658998\\ 0.0142918\\ 0.0018219\\ 0.0001022\\ 0.0000005\\ 11.9517\\ 31.6680\\ 15.7087\\ 1.5936\\ 0.8467\end{array}$	0.00012 0.00123 0.00132 0.00119 0.00144 0.00119 0.00065 0.00096 0.0003 0.00017 0.0000016 0.0188 0.175 0.0188 0.0188 0.0188 0.0013

Nuclide	Consensus Value
²⁵² Cf	3.757 ± 0.010

Среднее число испускаемых мгновенных нейтронов изотопом ²⁵²Cf

Santi P., Miller M. Reevaluation of Prompt Neutron Emission Multiplicity Distributions for Spontaneous Fission // Nuclear Science and Engineering. — 2008. — T. 160, No 2. — C. 190—199.

Вероятности испускания мгновенных нейтронов

Распределение по кратностям кластеров

Расстояние до реактора

- Высота активной зоны: 3.48м
- Диаметр активной зоны: 3.12м
- Расстояние от центра мишени детектора

до центра активной зоны: 19.59 м

$$N_{\overline{\nu}_{e}} \sim \frac{1}{\left(\vec{R}_{0} - \vec{R}_{i}\right)^{2}} \approx \frac{1}{R_{0}^{2}} + \frac{2(\vec{R}_{i}\vec{R}_{0})}{R_{0}^{4}} \approx \frac{1}{R_{0}^{2}},$$

где $N_{\overline{
u}_e}$ -- количество антинейтрино, проходящих через детектор. $ec{R}_0$ -- расстояние от центра мишени до центра активной зоны реактора. $ec{R}_i$ -- расстояние от центра активной зоны реактора до i-го излучающего элемента.

Зависимость отклика детектора от температуры

Анализ коррелированого фона, связанного с остановками мюонов

Усредненные формы двух типов сцинтилляционных сигналов

Распределение отношения амплитуд к энергии каждого события. Выделяются две линейные зависимости: для стандартных импульсов (зеленая линия) и сигналов с длительными фронтами (красная линия)

Анализ коррелированого фона, связанного с остановками мюонов

- Введено условие на форму импульса по отношению амплитуды к энергии
- За 40.99 суток "живого" времени отобрано
 6519 "muon-like" событий (~ 3.5% от общего числа событий-кандидатов на ОБР)
- Фитирование временного

распределения дает **т** = (2.16 ± 0.04) мкс

Распределение времен между первым и вторым событиями в парах с отборе по форме импульса