МОДЕЛИРОВАНИЕ БЛИЖНЕГО ДЕТЕКТОРА ДЛЯ НЕЙТРИННОГО ЭКСПЕРИМЕНТА Р20

Научный руководитель

д.ф.-м.н., ведущий научный сотрудник, НИЦ "Курчатовский институт" - ИФВЭ Соколов А.А. Гавва О., группа M20-115

Студент

ЦЕЛЬ РАБОТЫ

Целью данной работы является моделирование канала «меченых» нейтрино в рамках эксперимента Protvino to ORCA (P2O).

АКТУАЛЬНОСТЬ

На сегодняшний день одной из наиболее актуальных тем исследований в современной физике является изучение свойств нейтрино. Два открытых вопроса в нейтринной физике заключаются в необходимости подтверждения (или опровержения) наличия нарушения зарядовой четности (СР) в лептонном секторе, например, из-за СР-нарушающей дираковской фазы в матрице смешивания нейтрино, и в измерении иерархии масс нейтрино, т.е. в относительном упорядочении трех собственных состояний массы нейтрино. На оба вопроса можно ответить, изучая осцилляции ГэВ-ных нейтрино в экспериментах с длинной базой (>>100 км). Эксперимент Protvino to ORCA (P2O) обеспечит хорошую базу для подобного изучения. Проведение исследования в данном эксперименте с использованием метода «меченых» нейтрино является актуальной задачей на данный момент.

В ходе исследования ставились следующие задачи:

- 1) Описать суть метода «меченых» нейтрино и его преимущества и провести моделирование нейтринного канала, позволяющего формировать «меченые» нейтрино;
- 2) Провести расчеты для нахождения оптимальных параметров геометрии станции мечения;
- 3) Рассмотреть необходимость учета поправок на многократное рассеяние частиц, проходящих через станции мечения;
- 4) Рассмотреть влияние разрешения координатных пиксельных детекторов на ошибки измерения импульса нейтрино с использованием метода «меченых» нейтрино.

Эксперимент Protvino to ORCA (P2O)

Базовая линия: 2588 км

Угол наклона линии пучка: 11.7°

Experiment	T2K		T2HK	NOvA	DUNE	P20	
Location	Japan		Japan	USA	USA	Russia/Europe	
Status	operating		proposed	operating	construction	proposed	
Accelerator facility	J-PARC		J-PARC	Fermilab	Fermilab	Protvino	
Baseline	295 km		295 km	810 km	1300 km	2595 km	
Off-axis angle	2.5°		2.5°	0.8=	00	0°	
1-st max $\nu_{\mu} \rightarrow \nu_{e}$	0.6 GeV		0.6 GeV	1.6 GeV	2.4 GeV	4 GeV	
Detector	SuperK		HyperK	NOvA	DUNE	ORCA	Super-ORCA
Target material	pure water		pure water	LS	liquid Ar	sca water	
Detector technology	Cherenkov		Cherenkov	LS	TPC	Cherenkov	
Fiducial mass	22 kt		186 kt	14 kt	40 kt	8000 kt	4000 kt
Beam power	500 kW		1300 kW	700 kW	1070 kW	450 kW	450 kW
ν_e events per year (NO)	~ 20		230	~ 20	250	3500	3400
$\bar{\nu}_e$ events per year (IO)	~ 6		165	~ 7	110	1200	1100
NMO sensitivity ($\delta_{CP} = \pi/2$)			4σ	1σ	7σ	8σ	$> 8\sigma$
CPV sensitivity ($\delta_{CP} = \pi/2$)	1.5σ	3σ	8σ	2σ	7σ	2σ	6σ
1σ error on δ_{CP} ($\delta_{CP} = \pi/2$)			22°		16°	53°	16°
1σ error on δ_{CP} ($\delta_{CP} = 0$)			7°		8°	32°	10°
Year / data taking years	2018	2026	10 yr	2024	10 yr	3 yr	10 yr
Refs.	[27]	[29]	[2, 30]	[3, 31]	[4, 5]		

Таблица 1: Чувствительность нынешних и будущих нейтринных экспериментов на ускорителях с длинной базой к упорядочение массы нейтрино и лептонного СР-нарушение. Все чувствительности даны для случая нормального массового упорядочения. Дано ожидаемое количество событий $\nu_{\rm e}$ ($\bar{\nu}_{\rm e}$) в год.

- ПЛАНИРУЕМЫЕ
 ИССЛЕДОВАНИЯ В
 ЭКСПЕРИМЕНТЕ Р20:
- 1. Измерения параметров нейтринных осцилляций
- 2. Исследования фазы
 Дирака с СР-нарушением
- З. Измерение иерархии масс нейтрино
- 4. Другие эффекты в нейтринной физике

Метод «меченых» нейтрино

- Пучки нейтрино, производимые на ускорителях, в основном получают путем генерации интенсивного пучка пионов и их последующего распада π[±] → μ[±] v_µ. Непрерывный прогресс в кремниевых пиксельных детекторах позволяет создать трекеры пучка при все более высоких потоках частиц. Таким образом, становится возможным оснастить кремниевыми трекерами траекторию формируемого пучка нейтрино. Эти инструменты позволят восстановить все распады π[±] → μ[±] v_µ измерением параметров треков входящей и выходящей заряженной частицы. В каждом таком распаде образуется «меченое» нейтрино с измеренными параметрами:
- аромат нейтрино, определяемый из лептонного числа соответствующего заряженного лептона,
- киральность, определяемая из электрического заряда распадающегося пиона,
- направление и энергия нейтрино.

На основании временного и углового совпадения каждое нейтрино, взаимодействующее в детекторе, может быть связано с соответствующим меченым нейтрино.

Схема нейтринного канала

 $p + A \rightarrow \pi(K) + X$

 $\pi(K) \to \nu_\mu \left(\nu_e, \bar{\nu}_\mu, \bar{\nu}_e \right) \dots$

Схема возможного нейтринного канала, позволяющего формировать «меченые» нейтрино. Длина распадного канала 140 м, системы мечения расположены на первых и последних 10 метрах канала. Для того, чтобы в детектор попали только нейтрино, используется поглотитель длиной 55 м, состоящий из стальных балок.

Канал «меченых» нейтрино

На данном графике представлен энергетический спектр π-мезонов, от которых образуется пучок нейтрино.

Исходя из формы этого спектра, для упрощения вычислений будем использовать для дальнейшего исследования π^+ -мезоны с импульсом 10 ГэВ.

Рис.1. Двумерная гистограмма θ_{μ} и P_{μ} для мюона от распада 10 ГэВ-ного π -мезона в лабораторной системе.

Рис.2. Двумерная гистограмма θ_{V} и P_{V} для нейтрино от распада 10 ГэВ-ного π -мезона в лабораторной системе.

Распад $\pi^+ \rightarrow \mu^+ \nu_{\mu}$

Рис.3. Распределение импульсов нейтрино, попавших в детектор от распада 10 ГэВ-ного π-мезона. Рис.4. Распределение х-координат нейтрино в плоскости окна детектора от распада 10 ГэВ-ного πмезона.

Схема канала для формирования меченых нейтрино

Схема нейтринного пучка, в котором возможно производить мечение нейтрино. Зеленые прямоугольники представляют квадруполи, красные треугольники - диполи, а вертикальные желтые линии соответствуют координатным плоскостям станции мечения. Их количество и расположение не оптимизированы.

Формулы для вычисления угла $\delta \Theta$ и $P_{\pi xz}$ с использованием станции мечения:

Формула для измерения угла Θ_{π_xz} в плоскости хz с использованием станции мечения:

$$\Theta_{\pi_{xz}} = \arctan\left(\frac{x_2 - x_1}{z_2 - z_1}\right)$$

где x – x-координата π-мезона, z-координата πмезона, индексы соответствуют номеру плоскости мечения. При прохождении *π*-мезона через магнит его направление в плоскости хz отклоняется на угол:

$$\delta \Theta_{\pi_{xz}} = \frac{30 \vec{B} L_B}{P_{\pi_{xz}}}$$

где \vec{B} индукция магнитного поля в диполе, $L_{\rm B}$ расстояние между диполями.

Угол $\delta \Theta_{\pi_z xz}$ может быть определен с помощью измерения смещения направления π -мезона:

$$\tan\left(\Theta_{\pi_{xz}} + \delta\Theta_{\pi_{xz}}\right) = \frac{\left(x_3 - \left(\frac{x_2 - x_1}{z_2 - z_1}\right)(z_3 - z_1) + x_1\right)}{L_B} + \tan\left(\Theta_{\pi_{xz}}\right)$$

Ошибка в измерении импульса п-мезона

Рис.5. Гистограмма ΔP_{π} при $\theta_{\pi} = 1^{\circ}$.

Рис.б. Гистограмма ΔP_{π} при $\theta_{\pi} = 2^{\circ}$.

По гистограммам видно, что с увеличением угла наклона пучка π-мезонов увеличивается ошибка измерения его импульса.

Станция мечения мюонов

Эта станция сконструирована, как и предыдущая, но в ней имеется только один магнит. Импульс мюона определяется здесь измерением отклонения направления мюона после прохождения станции. Направление мюона определяется с помощью координатных плоскостей станции мечения. После измерения направления и импульса п-мезона и мюона в станциях мечения можно определить направление и импульс нейтрино, используя кинематику распада $\pi^+ \to \mu^+ \nu_{\mu}$.

Ошибка в измерении импульса «меченых» нейтрино

Рис.7. Гистограмма ΔP_{ν} при $\theta_{\pi} = 1^{\circ}$.

Рис.8. Гистограмма ΔP_{ν} при $\theta_{\pi} = 2^{\circ}$.

По гистограммам видно, что с увеличением угла наклона пучка π-мезонов увеличивается ошибка измерения импульсов «меченых» нейтрино и уменьшается доля «меченых» нейтрино, попавших в детектор.

Многократное рассеяние

Рис.9. Схема прохождения заряженных частиц π^{\pm} и μ^{\pm} через координатные плоскости мечения с учетом многократного рассеяния в них.

Был проведен расчет поправок на многократное рассеяние частиц, проходящих через станции мечения.

Частица, проходящая через плоскость мечения при многократном рассеянии отклоняется на очень малый угол

*Θ*₀= 0.05 мрад.

Исходя из того, что значения этого угла отклонения очень мало, на данном этапе работы мы можем пренебречь процессом многократного рассеяния частицы при прохождении через плоскости мечения.

Расчет оптимальных параметров для станции мечения мюонов – расположение станции

Рис.10. Количество нейтрино, попавших в детектор в зависимости от расстояния до конца распадного канала, на котором расположена станция мечения мюонов.

Из распределения видно, что с приближением мюонной станции к концу распадного канала (уменьшение расстояния до детектора) увеличивается количество нейтрино, попавших в детектор.

Расчет оптимальных параметров для станции мечения – <u>размер пикселей детектора</u>

Рис.11. ΔP_{ν} для детектора с размером пикселей 1×1 см²

Рис.12. ΔP_{ν} для детектора с размером пикселей 1×1 мм²

Из распределений видно, что чем меньше размеры пикселей детектора, тем меньше ошибки измерения импульса меченых нейтрино. (Данная зависимость нуждается в более тщательном исследовании).

Расчет оптимальных параметров для станции мечения – размер пикселей детектора

Entries

2500

2000

1500

1000

500

Рис.13. Для детектора с размером пикселей 1×1 см²

Рис.14. Для детектора с размером пикселей 1 × 1мм²

0.006 0.008 0.01 0.012 0.014 0.016

Из распределений видно, что чем меньше размеры пикселей детектора, тем меньше относительные ошибки измерения импульса меченых нейтрино. (Данная зависимость нуждается в более тщательном исследовании).

56994

0.002689

0.002392

Entries

Std Dev

0.018

Заключение

В ходе работы были получены следующие результаты:

- разработан код для моделирования канала «меченых» нейтрино;
- промоделирован двухчастичный распад п-мезонов с энергией 10 ГэВ;
- были рассмотрены ошибки измерений импульса п-мезонов в распадном канале с использованием станции мечения при разных углах наклона пучка п-мезонов;
- были рассмотрены ошибки измерений импульса «меченых» нейтрино, попавших в детектор;
- были произведены оценки угла отклонения частиц, проходящих через плоскости мечения, из-за многократного рассеяния;
- было промоделировано изменение расположения станции мечения, параметров координатных плоскостей, из которых можно сделать вывод об оптимальных условиях для проведения эксперимента.

На защиту выносятся результаты о проделанном моделировании канала «меченых» нейтрино в рамках эксперимента Р2О; исследование зависимости ошибок импульсов нейтрино, измеренных с использованием станции мечения, эффективности регистрации нейтрино от изменения условий и геометрии эксперимента. Дальнейшие исследования: использование временного и углового параметра для привязки меченых нейтрино к нейтрино, взаимодействующим в детекторе.

СПАСИБО ЗА ВНИМАНИЕ!