Измерение нейтральных *π*-мезонов в калориметре PHOS эксперимента ALICE в области высоких поперечных импульсов методом слившихся кластеров

Кусков В.А.

нияу мифи

Научный руководитель: Блау Д.С.

29 июня 2022

Введение

 Коллективные эффекты при образовании КГМ:

• Подавление выхода легких кварков:

• Изучение PDF/nPDF:

✓) Q (↓
2 / 26

Введение

В состав детектора ALICE входит фотонный спектрометр (PHOS), разработанный для измерения энергии фотонов и нейтральных мезонов.

Цель: измерение спектров нейтральных пионов в pPb- и pp-столкновениях вплоть до поперечных импульсов 120 ГэВ/с с помощью калориметра PHOS

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

Кластеризация

Кластер — набор ячеек калориметра, имеющих общую грань или ребро, в которых произошло энерговыделение от налетающей частицы

При высоких поперечных импульсах родительских пионов, фотоны рождаются под узким углом открытия \rightarrow при высоких энергиях кластеры от дочерних частиц

29 июня 2022

Параметр	Значение
Z _{vrtx}	< 10 cm
Количество ячеек	> 2*
Минимальная энергия, MeV	100/300**
Максимальная энергия, GeV	120
Время пролета, ns	25
Главная ось ливня M_{02} , cm 2	> 0.2*
CPV, σ	2.5

*Данные ограничения не применялись для класте-

ров *E* < 0.5 ГэВ;

**Метод инвариантных масс / метод наложенных кластеров.

Отбирались данные по следующим триггерам:

- MB детекторы V0A и V0C;
- L0 низкоэнергетический триггер PHOS (L0);
- L1 Высокоэнергетический триггер PHOS (L1).

Количество отобранных событий:

	MB	LO	L1
pPb	8.21E+07	2.53E+06	1.04E+06
рр	2.58E+08	2.46E+07	1.04E+06

▶ < ∃ >

Метод инварриантных масс

$$M = \sqrt{2E_1E_2(1-\cos\theta_{12})}$$

- 4 диапазона фитирования: [0.055, 0.220] ГэВ/с², [0.065, 0.22] ГэВ/с², [0.55, 0.20] ГэВ/с², [0.055, 0.24] ГэВ/с²;
- 2 функции описания комбинаторного фона pol2 и pol3;
- 2 функции описания пика Gaus и Crystal Ball.

Примеры распределений по двухфотонным инвариантным массам

Отбор наложенных кластеров

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

Отбор наложенных кластеров

- Merged cluster acc. $N_{merged}^{pass}(M_{02})/N_{merged}^{all}(M_{02});$
- Bg rejection rate $N_{notmerged}^{notpass}(M_{02})/N_{notmerged}^{all}(M_{02})$. Каждая точка (синие квадраты) на ROC-кривой представляет ограничение на минимальный M_{02} от 0 до 10 см² ([0;10], [0.1; 10], [0.2; 10] и т.д.).

ROC-curve [40-45] 3g clusters re 140 120 0.6 100 04 0.2 AUC = 0.873858 Merged clusters acceptance n GeV/c

Чистота наложенных кластеров

•
$$P = N_{merged}^{pass}(p_T)/N_{all}^{pass}(p_T)$$
 — чистота отбора;

•
$$\varepsilon_{cut} = N_{merged}^{pass}(p_T)/N_{merged}^{all}(p_T)$$
 — эффективность отбора.

Эффективость восстановления

Сырой спектр нейтральных пионов корректируется на эффективность реконструкции:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{3}N}{p_{T}\mathrm{d}p_{T}\mathrm{d}y\mathrm{d}\varphi} = \frac{1}{2\pi}\frac{1}{N_{ev}}\frac{1}{p_{T}}\frac{P}{\varepsilon_{rec}}\frac{\mathrm{d}^{2}N}{\mathrm{d}p_{T}\mathrm{d}y}$$

Кусков В.А. (НИЯУ МИФИ)

29 июня 2022

Спектр нейтральных пионов

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

29 июня 2022

- Разработан метод по отбору наложенных кластеров от π^0 в калориметре PHOS; спектры, полученные разработанным методом, в пределах ошибок согласуется со стандартным методом наложенных кластеров;
- Получен выход нейтральных пионов в pPb-столкновениях при $\sqrt{s_{NN}} = 8.16$ TэB методом инвариантных масс и методом наложенных кластеров, полученный спектр согласуется со спектром, опубликованным коллаборацией ALICE;
- Впервые получен выход нейтральных пионов в pp-столкновения при $\sqrt{s} = 13$ ТэВ;
- Метод наложенных кластеров позволил расширить диапазон реконструируемых нейтральных пионов до 120 ГэВ/с.

СПАСИБО ЗА ВНИМАНИЕ!

3

Смешивание p_T -hard бинов (генератор Pythia8):

$$w_i = rac{O_i}{N_{Trials,i}},$$

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

14 / 26

(1)

Кусков В.А. (НИЯУ МИФИ)

29 июня 2022

Функции, описывающие пионный пик в распределении инвариантных масс:

$$f(m_{\gamma\gamma},\sigma,\alpha) = \begin{cases} C \left[e^{-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2}} + e^{\frac{m_{\gamma\gamma}-m}{\alpha}} \left(1 - e^{-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2}} \right) \right], \ m_{\gamma\gamma} < m \\ C \exp \left(-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2} \right), \ m_{\gamma\gamma} > m \end{cases}$$

$$f(m_{\gamma\gamma},\sigma,n,\alpha) = \begin{cases} A \left(B - (m_{\gamma\gamma}-m)/\sigma \right)^n, \ m_{\gamma\gamma} - m < -\alpha\sigma \\ (m_{\gamma\gamma}-m)^2 \right) \end{cases}$$

$$(2)$$

$$f(m_{\gamma\gamma},\sigma,n,\alpha) = \begin{cases} A(B - (m_{\gamma\gamma} - m)/\sigma)'', \ m_{\gamma\gamma} - m < -\alpha\sigma \\ C \exp\left(-\frac{(m_{\gamma\gamma} - m)^2}{2\sigma^2}\right), \ m_{\gamma\gamma} - m > -\alpha\sigma \end{cases}$$
(3)

▶ ★ 厘 ▶

э

Соответствие в определении положения пика в МС-моделировании и реальных данных оче

Кусков В.А. (НИЯУ МИФИ)

 $\pi^{\mathbf{0}}$ spectrum PHOS

Backup. Распределение по числу локальных максимумов

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

29 июня 2022

Кусков В.А. (НИЯУ МИФИ)

29 июня 2022

Рис.: Доли различных кластеров в выборке: а) – доли наложенных кластеров выделенных категорий; б) – доля всех наложенных кластеров среди всех кластеров PHOS

э

$$S = \begin{pmatrix} s_{xx} & s_{zx} \\ s_{xz} & s_{zz} \end{pmatrix}, \quad (4)$$

rge
$$s_{xx} = \langle (x_i - \bar{x})^2 \rangle$$

$$\lambda_{1,2} = \frac{s_{xx} + s_{zz} \pm \sqrt{(s_{xx} - s_{zz})^2 + 4s_{xz}^2}}{2} \quad (5)$$

Собственные значения (большая и малая оси) профиля электромагнитного ливня

29 июня 2022

▶ < ∃ ▶</p>

э

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

29 июня 2022

Параметризация распределения M_{02} при отборе наложенных кластеров:

Fit Functions

э

Trigger rejection factors

При регистрации событий по триггерам L0 и L1 необходимо также учитывать частоту срабатывания триггеров по отношению к событиям, зарегистрированным по триггеру MB с помощью коэффициента подавления триггеров (trigger rejection factor):

$${\it RF} = rac{dN_{Trig}/dy/dp_T}{dN_{MB}/dy/dp_T}$$

Кусков В.А. (НИЯУ МИФИ)

Рис.: Коэффициенты подавления триггеров: а) – для триггера L0 по отношению к триггеру MB; 6) – для триггера L1 по отношению к триггеру L0

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э