

Review and Status of Neutrino Oscillation Studies from Long Baseline Accelerator Based Experiments

ICPPA 2022 December 1, 2022 National Research Nuclear University "MEPhI"

Vittorio Paolone University of Pittsburgh

Outline*

- History and Motivation : v's
- Present:T2K and NOvA Experiments
- Oscillation Results:
 - Muon (+Anti-)Neutrino Disappearance
 - Electron (+Anti-)Neutrino Appearance
 - Joint Fits
- Future Hyper-K and DUNE
- Prospects, Outlook and Summary

* Disclaimer: I am not officially representing T2K, NOvA, Hyper-K, or DUNE. I am summarizing public knowledge.

ICPPA: December 1, 2022

"I have done a terrible thing, I have postulated a particle that cannot be detected..."

 \rightarrow Wolfgang Pauli, 1930, after postulating the existence of the neutrino

Pauli was not too far off – They are hard to detect (first detected in late 1950's) \rightarrow One needs lots of them and massive detectors.

Presently we know of three active neutrinos: $\nu_{_{e}}$, $\nu_{_{\mu}}$, $\nu_{_{\tau}}$

ICPPA: December 1, 2022

Neutrino Masses and Mixing

• 1969-90s Ray Davis Measures Solar ν_e Flux at Homestake Deep Underground Mine ~1/3 Expected! Gallex, Sage, SuperK, SNO, Kamland (Reactor)

• Interpretation: solar $\nu_e \rightarrow 1/3 \nu_e + 1/3 \nu_{\mu} + 1/3 \nu_{\tau}$ (roughly)

• 1980s IMB, Kamioka, measure atm. ν_{μ} flux, less than expected. SuperK; K2K, MINOS (Accelerators) Confirm • Interpretation: atm. $\nu_{\mu} \rightarrow 1/2\nu_{\mu} + 1/2\nu_{\tau}$

What's going on... Neutrino Oscillations Established: → Neutrinos are not mass eigenstates

 \rightarrow Neutrino Masses & Mixing Measurements Era Began

 \rightarrow Evidence for physics beyond the Standard Model

ICPPA: December 1, 2022

3-Flavor Mixing (PMNS Matrix)

 3-flavor mixing describes (almost) all neutrino oscillation phenomena (3 mixing angles, 2 independent mass splittings, 1 CPV phase)

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\theta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{bmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{bmatrix} \cos \theta_{13} & e^{-i\theta} \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{13} e^{+i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \\ \frac{Atmospheric \& accelerator:}{\theta_{23} \sim 45^{\circ}} & B_{12} e^{-i\theta} & B_{12} e^{-$$

The matter-antimatter asymmetry problem:

The Big Bang should have created equal amounts of matter and antimatter. So why is there far more matter than antimatter in the universe?

ICPPA: December 1, 2022

- Value CP-Violating Phase:
- θ_{23} Maximal? Octant? (< or > 45°)
- Sign of the mass difference (MO): Δm²₃₂ = m²₃ m²₂
 Normal Ordering (NO) > 0
 Inverted Ordering (IO) < 0
- Above items accessible with LBL
- Are there any more v's? (sterile)

Are Neutrinos Dirac or Majorana? Absolute Mass Scale

ICPPA: December 1, 2022

ICPPA: December 1, 2022

First Use of Off-axis ν_{μ} Beam:

Intense & high-quality beam (Beam direction stability < 1mrad)</p>

- ~1 mrad shift corresponds to ~2% energy shift at peak
- Low-energy narrow-band beam

 ${\color{black} \bullet}$ Can choose between v and \overline{v} by changing current direction in horns

- E_v peak around oscillation maximum (~0.6 GeV)
- Small high-energy tail \rightarrow reduces feed-down background events
- $\mathbf{Q} \pi, \mathbf{K}$ production at target was measured using CERN NA61 exp.

ICPPA: December 1, 2022

 ν - mode known as "forward horn current" (FHC) or "positive focusing" (PF)

- $\overline{\nu}$ mode known as "reverse horn current" (RHC) or "negative focusing" (NF)
- → Mean energy sub-GeV→ Present flux uncertainties smaller than 6% (at peak) Main systematics due to the hadron interactions modeling → With NA61/SHINE measurements using T2K replica target

ICPPA: December 1, 2022

• Need Precision understanding of Low energy (Few GeV) v_{μ} & \bar{v}_{μ} cross sections to improve models.

\rightarrow T2K and NOvA have rich programs in non-oscillation physics (v cross sections)

(v_appearance

example)

ICPPA: December 1, 2022

V. Paolone, UPitt

- - However Experiments Calculate E_{rec}

• v oscillations:

- $E_{_{\rm rec}}$ depends on Flux, σ , detector response, interaction multiplicities, target type, particle type produced and final state interactions: E_{rec} not equal to E_{y}
- \rightarrow Note oscillation probability depends on E

 $P(v_{u} \rightarrow v_{t}) = \sin^{2}(2\theta_{32})\sin^{2}((1.27\Delta m_{32}^{2}L)/E_{t})$

(10⁻³⁸ cm²GeV⁻¹) CNGS 0.8 $\begin{array}{c} \sigma(\nu_{\mu}N \rightarrow \mu^{-}X)/E(GeV) \\ \sigma & \gamma \\ \sigma & \gamma \\ \sigma & \gamma \\ \sigma & \gamma \\ \sigma & \sigma \\ \sigma &$ Single Pion 10 10

MINOS

 \rightarrow We are now in a period of precision neutrino oscillation measurements

Overview of T2K: Near Detectors(ND280)

On-Axis Detector (INGRID) Monitor v: Beam direction Beam Intensity

Off-Axis Detector: In SK Direction

In SK Directio

Measure:

- ν flux
- Cross-section measurements using water targets to reduce systematic errors on oscillation parameters

 $\ensuremath{\,\rightarrow\,}$ Used for monitoring of beam, flux constraints and systematic error reduction

The T2K Far Detector: Super-Kamiokande

ICPPA: December 1, 2022

Analyzed Data (T2K)

Analyzed data:

- → v-mode: 21.7×10^{20} POT → \overline{v} -mode: 16.3×10^{20} POT → Total: 38.2×10^{20} POT (POT – Protons on Target)
- \rightarrow Required beam direction stability also achieved (< 1mrad)

ICPPA: December 1, 2022

T2K and NOvA Comparisons

- Both T2K and NOvA are studying the same physics
 - However they are using different detection technologies
 - This is a good thing
- As mentioned both measure $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ but...
 - In the PMNS framework these are functions of several parameters
 - *i.e.* Baseline for NOvA is 810km and 295km for T2K
 - Longer baselines have greater sensitivity to the Mass Ordering
- The joint measurements of T2K and NOvA important in untangling the physics parameters embedded in P(v_µ -> v_e) and P($\bar{v}_{\mu} \rightarrow \bar{v}_{e}$), specifically $\delta_{_{CP}}$
 - Joint working group

Disappearance (anti-)neutrino results... (Test for CPT Violation or a search for non-standard v interactions)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - (\cos^2 \theta_{13} \sin^2 2\theta_{23}) \sin^2 (\Delta m_{32}^2 \frac{L}{4E}) \qquad \qquad \mathbf{Sensitive to:} \\ \theta_{23}, |\Delta m_{31}^2| (\sim |\Delta m_{32}^2|)$$

• θ_{23} Maximal? Octant? (< or > 45°)

T2K: Disappearance Event Selection

- → Reactor constraints on Θ_{13} used (T2K)
- → Consistent with maximal mixing (Θ_{23} =45°) but best fit in upper octant
- \rightarrow In addition no obvious difference observed between ν and $\overline{\nu}$

Best fit (NOvA): Prefers Normal Ordering $\sin^2\theta_{23} = 0.57^{+0.03}_{-0.04}$ (UO) $\Delta m^2_{32} = (2.41 \pm 0.07) \cdot 10^{-3} \text{ eV}^2$

Appearance (anti-)neutrino results...

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2\sin^{2} \theta_{13}\right)\right)$$

$$-\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \sin \left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right)$$

$$[(P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \delta \text{ turns into } -\delta \text{ and a to } -a ("a" \text{ matter effect term})]$$

• $\theta_{_{23}} \rightarrow \nu_{_{e}}$ and $\overline{\nu}_{_{e}}$ appearance probabilities are affected in the same way

• $\delta_{_{\rm CP}} = -\pi/2 \rightarrow$ maximize $\nu_{_{\rm e}}$ appearance, minimize $\overline{\nu}_{_{\rm e}}$ (~30%)

• $\delta_{_{\rm CP}} = \pi/2 \rightarrow \text{maximize } \overline{\nu}_{_{e}}$ appearance, minimize $\nu_{_{e}}$ (~30%)

• Normal hierarchy \rightarrow same as $\delta_{CP}^{}=-\pi/2$ but smaller effect in T2K (~10%)

• Inverted hierarchy \rightarrow same as $\delta_{CP} = \pi/2$ but smaller effect in T2K (~10%)

Neutrino mode e-like candidates

Expected # of events($v_{\mu}, \overline{v}_{\mu}, v_{e}, \overline{v}_{e})$:

T2K

$(1(M)R \rightarrow 1(Multi) Ring)$

Mode	Sample	δ=-π/2 MC	δ=0 MC	δ=π/2 MC	δ=π MC	Data
ν	1Re	102.7	86.7	71.1	87.1	94
	1Re CC1π⁺	10.0	8.7	7.1	8.4	14
	1Rµ	379.1	378.3	379.1	380.0	318
	MRµ CC1π⁺	116.5	116.0	116.5	117.0	134
\overline{v}	1Re	17.3	19.7	21.8	19.4	16
	1Rµ	144.9	144.5	144.9	145.3	137

• Preference for $\delta_{_{CP}} {=} {-} \pi/2 \rightarrow maximize \ \nu_{_{e}}$ appearance probability, minimize $\overline{\nu}_{_{e}}$ appearance

- T2K results consistent with reactor results
- Data prefer close to maximal CPV: $\delta_{CP} = -\pi/2$
 - $_{\bullet}$ With reactor constraints: stronger preference for values of $\delta_{_{\rm CP}} \thicksim$ -1/2
 - $\bullet~$ Even though statistics are small $\overline{\nu}_{_{e}}$ results reinforce maximal CPV observed for $\nu_{_{e}}$ data

ICPPA: December 1, 2022

\rightarrow Upgrade to T2K (\rightarrow Hyper-K)

- \rightarrow Hyper-K
- \rightarrow DUNE Project

ICPPA: December 1, 2022

Hyper-Kamiokande Experiment

Neutrino Detection Method: Water Cerenkov Detector

Access tunnel excavation: Finished on schedule Cavern excavation is ongoing

Hyper-Kamiokande:Detector Details

Hyper-K

Michael Smy, UC Irvine

 Cavern diameter 69m, height 73m + dome on top

- Tunnel construction completed, cavern excavation has commenced
- Tank construction: 2024/2025
- PMTs to be installed: 2025/2026
- Data collection starts in 2027
- Gd doping not included in present Hyper-K baseline design
- Addition to T2K Near Detector Suite
 IWCD: ~1kt scale Gd-doped water Cerenkov detector with little overburden
 - Diameter ~8m, height ~6m
 - Uses multi-PMT modules (19 3" PMTs)

ICPPA: December 1, 2022

IWCD

FY2020 FY2021 FY2022 FY2023 FY2024 FY2025 FY2026 FY2027 Geo. Access Cavern Tank PMT Installa Ion Wirvey Access Cavern Cavern Installa Ion Ion MT production MT production MT Ion Ion Ion Ion

ICPPA: December 1, 2022

FY2028

- MegaWatt neutrino beam generated at FNAL to SURF(South Dakota, US) over 1300 km
- Near Detector complex (ND) at FNAL (multiple technologies will be employed)
- Far Detector site at SURF will accommodate 3+1 17 kt far detector (FD) modules (LArTPC)
- Long-Baseline Neutrino Facility (LBNF) responsible for the beam-line and Near/Far facilities
- Goals: Precision neutrino oscillation physics, MeV-scale physics (SuperNOVA detection), Nucleon decay searches, and extended BSM searches

ICPPA: December 1, 2022

Wideband Beam

Eur. Phys. J. C 80 (2020) 10, 978

ICPPA: December 1, 2022

FNAL Beamline Facility

Proton Improvement Plan (PIP-II): critical element for DUNE's intense neutrino beam

- 1.2 MW beam intensity, up-gradable to 2.4 MW
- Goal: MW-scale to DUNE by 2031

- Detection Method: Liquid Argon Time Projection Chamber (LArTPC)
- Imaging Detectors: Excellent energy reconstruction and high resolution
 - Details of interactions are clearly seen
 - Allows separation Signal ($v_e^{}$ CC) from background (NC π^0)
 - Low energy thresholds: MeV-scale physics
 - Scalable → massive detectors
- History of successful operation
 - MicroBooNE, ICARUS...

ICPPA: December 1, 2022

JINST 15 T08010 66 m Single FD module (17 kt); Membrane cryostat liauid • The first two DUNE FD modules: LArTPC (17 kt mass each) ➡ FD#2: Vertical Drift (VD)

- FD#3: LAr technology TBD
- FD#4: TBD (R&D ongoing)

Charge/tick/channel (ke)

DUNE:ProtoDUNE-SP Run 5770 Event 59001

Wire Number

JINST 15 P12004 (2020) – ProtoDUNE @CERN

ਦੋਂ 4500

DUNE: Physics Sensitivities

- Details [Eur. Phys. J. C 80 (2020) 10, 978]
- Using reconstructed spectra, includes full FD systematics
 - 3.5 years neutrino beam mode
 - 3.5 years anti-neutrino beam mode
- Expect:
 - ~1000 ν_{e}/ν_{e} -bar events in 7years
 - ~10,000 ν_{μ} / ν_{μ} -bar events in 7 years

Neutrino Mode

Antineutrino Mode

- 5σ discovery potential: CP violation over >50% of δ_{CP} values
 - 7-16° resolution to δ_{CP} (using
 - input for solar parameters only)
 - Simultaneous measurement of neutrino mixing angles and δ_{CP}

• MH

sensitivity (> 5σ) regardless of parameter choices

ICPPA: December 1, 2022

• Phase I

- FD: 2 x 17 kt LArTPC modules
 FD turns on late 2020s
- ND: ND-LAr+TMS (with PRISM) + SAND
- 1.2 MW capable beam-line and ND By 2031

• Phase II

- FD: 4 x 17 kt modules
- ND: ND-LAr+ND-GAr (with PRISM)
 + SAND
- Proton beam 1.2 MW to 2.4 MW

ICPPA: December 1, 2022

DUNE and Hyper-K Comparisons

- Similar to T2K/NOvA Comparisons
- DUNE long baseline (~1300 km, compared to Hyper-K BL (~295km)) will be more sensitive to matter effects (correlation with CPV)
 - Wide-band beam (multi-GeV energies) to measure multiple oscillation maxima for neutrinos and anti-neutrinos
 - High resolution detector (LArTPC) allows use of all (CC) cross section channels
- **Hyper-K** with shorter baseline will reduce correlation between CPV and matter effects
 - Low energy (sub-GeV), narrow-band beam to focus on CCQE
 - Inexpensive and well understood water Cerenkov detector with limited tracking ability but can employ larger fiducial masses

→ The joint measurements of DUNE and Hyper-K important to untangle the physics parameters embedded in P($v_{\mu} \rightarrow v_{e}$) and P($\overline{v}_{\mu} \rightarrow \overline{v}_{e}$), specifically δ_{CP}

Summary and Outlook

- Both T2K and NOvA have accumulated significant_POT
 - Joint analysis across all modes of oscillation $\nu_{\mu,e}/\overline{\nu}_{\mu,e}$ disappearance, appearance
 - Constraints from near detector measurements important to reduce systematic errors
 - These data show a preference for close to maximal $\theta_{_{23}}$ mixing maybe upper octant, NO, and reduced the allowed $\delta_{_{CP}}$ phase space
- Healthy competition and complementary between T2K and NOvA
 Joint analysis in the works
- DUNE and Hyper-K have a similar complementary
 - It is important to determine the details of CPV using different baselines and detector technologies

 \rightarrow Stay Tuned: More oscillation results to come - However to get definitive answers will take several years...