### **Recent Heavy Flavour results from ATLAS and CMS**



Leonid Gladilin (MSU / JINR) on behalf of the ATLAS and CMS Collaborations





#### ICPPA 2022, 29.11-02.12 2022, MEPhI

**Selected recent results** 

#### Outline : ATLAS + CMS @ LHC

**Di-charmonia resonances** (ATLAS-CONF-2022-040, CMS PAS BPH-21-003) **Triple J/** $\psi$  production (arXiv:2111.05370 accepted by Nature Physics) **B**<sub>c</sub><sup>+</sup> production and decays (PRD 104(2021), JHEP 08(2022)87) *B*<sub>(s)</sub><sup>0</sup>  $\rightarrow \mu^+\mu^-$  decays (FCNC) (CMS PAS BPH-21-006) **b** quark fragmentation (JHEP 12 (2021) 131) **B**<sup>0</sup><sub>(s)</sub>  $\rightarrow \psi(2S)K^0_S(X)$  decays (EPJC 82 (2022) 499) **Prospects & Summary** 

### ATLAS+CMS @ LHC

#### ATLAS : weight : ~ 7000 tons 44m



#### Run I : 2010 - 2012



#### Run II : 2015 - 2018





#### **Dimuon triggers**

### Di-charmonia tetraquarks (cccc)

#### ATLAS-CONF-2022-040

#### $J/\psi J/\psi$ and $J/\psi + \psi(2S)$ in $4\mu$ final state studied at ATLAS using 139 fb<sup>-1</sup> of pp at Vs = 13 TeV

#### **Blind analysis**

| Di-charmonium<br>Process            | Generator                                           | PDF                                            | Parton shower          | Tune                            |
|-------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------|---------------------------------|
| SPS<br>DPS<br>Non-prompt<br>X(6900) | Рутніа 8.244<br>Рутніа 8.244<br>Рутніа 8.244<br>ЈНU | NNPDF23LO<br>NNPDF23LO<br>NNPDF23LO<br>CTEQ6L1 | Pythia 8.244+NNPDF23LO | A14<br>A14<br>A14<br>A14<br>A14 |

#### ΔR > 0.25



### Event selection, reconstruction and definition of signal and control regions

| Signal region                                                                                               | Signal region SPS/DPS control region non-prompt region                                                                         |                |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| E                                                                                                           | Di-muon or tri-muon triggers,                                                                                                  |                |  |  |
| Opposite charged                                                                                            | I muons from the same $J/\psi$ or $\psi(2S)$ v                                                                                 | ertex,         |  |  |
| Loose muon ID, $p_{\rm T}^{1,2,3,4} >$                                                                      | • 4, 4, 3, 3 GeV and $ \eta_{1,2,3,4}  < 2.5$ for t                                                                            | the four muons |  |  |
| $m_{J/\psi} \in \{2.94,$                                                                                    | 3.25} GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ C                                                                              | GeV,           |  |  |
| Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{di-\mu}/N < 100$ ,                                    |                                                                                                                                |                |  |  |
| Vertex $\chi^2_{4\mu}/N < 3$ ,                                                                              |                                                                                                                                |                |  |  |
| $L_{xy}^{4\mu} < 0.2 \text{ mm},  L_{xy}^{\text{di-}\mu}  < 0.3 \text{ mm},$ Vertex $\chi_{4\mu}^2/N > 6$ , |                                                                                                                                |                |  |  |
| $m_{4\mu} < 7.5$ GeV,                                                                                       | $m_{4\mu} < 7.5 \text{ GeV},$ 7.5 GeV $< m_{4\mu} < 12.0 \text{ GeV} (\text{SPS})$ $ L_{xy}^{\text{di-}\mu}  > 0.4 \text{ mm}$ |                |  |  |
| $R < 0.25$ between charmonia   14.0 GeV < $m_{4\mu} < 25.0$ GeV (DPS)                                       |                                                                                                                                |                |  |  |

#### ΔR < 0.25



### Di-charmonia tetraquarks (cccc)

#### ATLAS-CONF-2022-040



0

7.5

8.5

9

m<sub>4µ</sub><sup>con</sup> [GeV]

8



### Di-J/ $\psi$ tetraquarks ( $c\bar{c}c\bar{c}$ )

#### **CMS PAS BPH-21-003**

loose muon identification

 $J/\psi J/\psi$  ( $\Rightarrow 4\mu$ ) spectrum studied at CMS using 135 fb<sup>-1</sup> of pp collisions at  $\sqrt{s} = 13$  TeV (2016-2018)

#### Event selection and reconstruction:

- **3-µ trigger**:  $\mu^+\mu^-$  from J/ $\psi$  + third muon (on muons from J/ $\psi$ :  $p_+(\mu^+\mu^-) > 3.5$  GeV in 2017-2018)
- blinded signal region  $m(J/\psi J/\psi)$  in [6.2, 7.8] GeV (from preliminary investigation on 2011-2012 data)
- $p_{\tau}(\mu) > 2.0 \text{ GeV};$  $|\eta(\mu)| < 2.4;$
- $m(\mu^+\mu)$  in [2.95, 3.25] GeV;  $p_{\tau}(\mu^+\mu) > 3.5 \text{ GeV}$   $P_{vt}(\mu^+\mu) > 0.5\%$
- common vertex fit:  $P_{_{vtx}}(4\mu) > 0.5\%$
- Arbitration of multiple candidates:
  - Select best combination of same  $4\mu$  (from MC: 0.2%) Ο
  - Keep all candidates arising from more than four muons (from MC: 0.2%) Ο

#### **Background model:**

- NRSPS: threshold function \* pol2 \* exponential
- NRDPS: threshold function \* pol2 \* exponential
- Relativistic Breit-Wigner near  $J/\psi J/\psi$  threshold BWO:
  - inadequacy of NRSPS near threshold 0
  - feed-down of partially reconstructed higher mass states 0
  - possible coupled-channel interactions, pomeron-exchange processes, etc. 0



#### No interference assumed

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

$$= \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^- + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^-$$

### Di-J/ψ tetraquarks (*cc̄cc̄*)

#### CMS PAS BPH-21-003

25 MeV

Candidates /

Unc.

CMS Preliminary

#### CMS signal + background model

Three Relativistic Breit-Wigner (J<sup>P</sup> = 0<sup>+</sup>) are considered

| Mass (MeV)     | Width (MeV)                                                                        | Local stat. signif.                                                                                                                                                     |
|----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6552 ± 10 ± 12 | 124 ± 29 ± 34                                                                      | > 5.7ơ                                                                                                                                                                  |
| 6927 ± 9 ± 5   | 122 ± 22 ± 19                                                                      | > 9.4ơ                                                                                                                                                                  |
| 7287 ± 19 ± 5  | 95 ± 46 ± 20                                                                       | > 4.1o                                                                                                                                                                  |
|                | Mass (MeV)           6552 ± 10 ± 12           6927 ± 9 ± 5           7287 ± 19 ± 5 | Mass (MeV)         Width (MeV)           6552 ± 10 ± 12         124 ± 29 ± 34           6927 ± 9 ± 5         122 ± 22 ± 19           7287 ± 19 ± 5         95 ± 46 ± 20 |

first error is statistic, second is systematic error

#### LHCb signal models + CMS background

- Model 1:
  - X(6900) parameters in agreement
  - but dip at 6.7 not well described
- Model 2:
  - Larger X(6700) amplitude
  - X(7200) region not well described



### LHCb non-interference model I

X(6900) confirmed at CMS

Values consistent with LHCb

### LHCb interference model II

135 fb<sup>-1</sup> (13 TeV)

Data - Fit

BW1 .... BW2[X(6900)]

BW3 - Background

# Di-charmonia tetraquarks (*cccc*)

| (GeV)           | $m_0$                           | $\Gamma_0$                                | $m_1$                                     | $\Gamma_1$                      |
|-----------------|---------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|
| $di_J/y_{\ell}$ | $6.22 \pm 0.05^{+0.04}_{-0.05}$ | $0.31 \pm 0.12^{+0.07}_{-0.08}$           | $6.62 \pm 0.03 ^{+0.02}_{-0.01}$          | $0.31 \pm 0.09^{+0.06}_{-0.11}$ |
| ur o y φ        | $m_2$ $\Gamma_2$                |                                           | -                                         | _                               |
|                 | $6.87 \pm 0.03^{+0.06}_{-0.01}$ | $0.12 \pm 0.04 \substack{+0.03 \\ -0.01}$ | -                                         | _                               |
| (GeV)           |                                 | <i>m</i> <sub>3</sub>                     | $\Gamma_3$                                |                                 |
| J/u/u+u/(2S)    | model A                         | $7.22 \pm 0.03 \substack{+0.02 \\ -0.03}$ | $0.10\substack{+0.13+0.06\\-0.07-0.05}$   | _                               |
| • / • · • (=3)  | model B                         | $6.78 \pm 0.36^{+0.35}_{-0.54}$           | $0.39 \pm 0.11 \substack{+0.11 \\ -0.07}$ | —                               |
|                 |                                 |                                           |                                           |                                 |

#### CMS

|   | BW1              | BW2             | BW3                 |
|---|------------------|-----------------|---------------------|
| т | $6552\pm10\pm12$ | $6927\pm9\pm5$  | $7287 \pm 19 \pm 5$ |
| Γ | $124\pm29\pm34$  | $122\pm22\pm19$ | $95\pm46\pm20$      |
| N | $474 \pm 113$    | $492\pm75$      | $156\pm56$          |

#### X(6900) well seen by all 3 experiments

Signatures for a bump at 7.2-7.3 GeV In all 3 experiments

Nature of the low-mass bump to be clarified

Role of reflections from decays to  $J/\psi+\psi(2S)$ ,  $J/\psi+\chi_c$  to be studied

#### ATLAS-CONF-2022-040





#### Sci.Bull. 65 (2020) 1983



#### Observation of triple J/ $\psi$ meson production



#### CMS, arXiv:2111.05370 accepted by Nature Physics

$$N_{\rm sig}^{\rm 3J/\psi} = 5.0^{+2.6}_{-1.9}$$

#### 5.5 σ (MC toys)

 $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) =$ 272<sup>+141</sup><sub>-104</sub>(stat)±17(syst) fb

f<sub>SPS</sub> = 6%

f<sub>DPS</sub> = 74%

f<sub>TPS</sub> = 20%

#### Observation of triple J/ $\psi$ meson production

$$\begin{aligned} p_{DPS}^{pp\rightarrow q_{1}q_{2}+x_{n}} = \begin{pmatrix} m \\ 2 \end{pmatrix} \underbrace{p_{PS}^{pp\rightarrow q_{1}+x_{n}} e_{SPS}^{pp\rightarrow q_{2}+x_{n}} e_{SPS}^{pp\rightarrow q_{2}+x_{$$

CMS, arXiv:2111.05370

accepted by Nature Physics

Measurement of the relative  $B_c^{\pm}/B^{\pm}$  production cross section with the ATLAS detector at  $\sqrt{s} = 8$  TeV PHYSICAL REVIEW D 104, 012010 (2021)



 $B^+ \rightarrow J/\psi K^+$ 



 $B_c^+$  and  $B^+$  yields measured using di-muon trigger

Their ratios, corrected for acceptances and efficiencies, measured in two  $p_T$  bins (13-22 GeV, >22 GeV) and two |y| bins (<0.75, 0.75-2.3)

#### $B_c^+ / B^+$ x-section ratios at 8 TeV

 $\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psiK^{\pm})} = (0.34 \pm 0.04_{\text{stat}} + 0.06_{-0.02}_{-0.02} \text{syst} \pm 0.01_{\text{lifetime}})\%$ 

#### Compatible with CMS/LHCb



#### The ratio decreases with p<sub>T</sub>

#### Differences in production? hadronization?

#### No significant |y| dependence

#### $B_c^+ / B^+$ x-section ratios at LHC

$$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} =$$

**0.683**  $\pm$  0.018  $\pm$  0.009**pT < 20 GeV**, 2.0 < |y| < 4.5</th>LHCb at 8 TeV**0.48**  $\pm$  0.05  $\pm$  0.03  $\pm$  0.05**pT > 15 GeV**, |y| < 1.6</th>CMS at 7 TeV**0.44**  $\pm$  0.07  $^{+0.09}_{-0.04}$   $\pm$  0.01**13 < pT < 22 GeV**, |y| < 2.3</th>ATLAS at 8 TeV**0.24**  $\pm$  0.04  $^{+0.05}_{-0.01}$   $\pm$  0.01**pT > 22 GeV**, |y| < 2.3</th>ATLAS at 8 TeV

The ratio decreases with  $p_T$ 

Differences in production? hadronization?



Measurement of  $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ 

#### ATLAS, JHEP 08(2022)87



Figure 1: Feynman diagrams for  $B_c^+ \to J/\psi D_s^{(*)+}$  decays: (a) colour-favoured spectator, (b) colour-suppressed spectator, and (c) annihilation topology.

Normalization mode:  $B_c^+ \rightarrow J/\psi \pi^+$ 

**Run-I measurements: LHCb** 

Phys. Rev. D 87 (2013) 112012,

**ATLAS** Eur. Phys. J. C **76** (2016) 4.

#### 2D unbinned fit of two subsets simultaneously



#### Normalization mode: $B_c^+ \rightarrow J/\psi \pi^+$

- $\chi^2(B_c^+)/N_{dof} < 1.8 \ (N_{dof} = 4 \text{ in the } B_c^+ \rightarrow J/\psi \pi^+ \text{ vertex fit}),$
- $L_{xy}(B_c^+) > 0.3 \text{ mm},$
- $|d_0^{\text{PV}}(B_c^+)/\sigma_{d_0^{\text{PV}}}(B_c^+)| < 3 \text{ and } |z_0^{\text{PV}}(B_c^+)/\sigma z_0^{\text{PV}}(B_c^+)| < 3,$
- $p_{\rm T}(B_c^+) / \sum p_{\rm T}({\rm trk}) > 0.10$ ,



| Parameter                                                                           | Value                                                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $m_{B_c^+}$ [MeV]<br>$\sigma_{B_c^+}$ [MeV]<br>$N_{B_c^+ \rightarrow J/\psi \pi^+}$ | $\begin{array}{r} 6274.5 \pm 1.5 \\ 47.5 \pm 2.5 \\ 8440^{+550}_{-470} \end{array}$ |

## BCVEGPY 2.2 interfaced to Pythia 8.244

| Mode                                            | $\epsilon^{\mathrm{DS1}}_{B^+_c 	o J/\psi X}$ [%] | $\epsilon^{\mathrm{DS1\&2}}_{B^+_c \to J/\psi X}  [\%]$ |
|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|
| $B_c^+ \to J/\psi D_s^+$                        | $0.971 \pm 0.012$                                 | $1.163 \pm 0.013$                                       |
| $B_c^+ \rightarrow J/\psi D_s^{*+}, A_{00}$     | $0.916\pm0.012$                                   | $1.088\pm0.012$                                         |
| $B_c^+ \rightarrow J/\psi D_s^{*+}, A_{\pm\pm}$ | $0.868 \pm 0.010$                                 | $1.049\pm0.011$                                         |
| $B_c^+ 	o J/\psi \pi^+$                         | $2.169 \pm 0.018$                                 | _                                                       |

#### **Results:**

$$R_{D_{s}^{(*)+}/\pi^{+}} = \frac{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{(*)+})}{\mathcal{B}(B_{c}^{+} \to J/\psi \pi^{+})} = \frac{N_{c}^{\text{DS1}}}{N_{B_{c}^{+} \to J/\psi \pi^{+}}} \times \frac{\epsilon_{B_{c}^{+} \to J/\psi \pi^{+}}}{\epsilon_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}} \times \frac{1}{\mathcal{B}(D_{s}^{+} \to \phi(K^{+}K^{-})\pi^{+})}$$

$$R_{D_{s}^{*+}/D_{s}^{*}} = \frac{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{*+})}{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{*})} = \frac{N_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\mathrm{DS1\&2}}}{N_{B_{c}^{+} \to J/\psi D_{s}^{*}}^{\mathrm{DS1\&2}}} \times \frac{\epsilon_{B_{c}^{+} \to J/\psi D_{s}^{+}}^{\mathrm{DS1\&2}}}{\epsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\mathrm{DS1\&2}}} = r_{D_{s}^{*+}/D_{s}^{+}} \times \frac{\epsilon_{B_{c}^{+} \to J/\psi D_{s}^{+}}^{\mathrm{DS1\&2}}}{\epsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\mathrm{DS1\&2}}}$$

$$\Gamma_{\pm\pm}/\Gamma = f_{\pm\pm} \times \frac{\epsilon_{B_c^+ \to J/\psi D_s^{*+}}^{\text{DS1\&2}}}{\epsilon_{B_c^+ \to J/\psi D_s^{*+}, A_{\pm\pm}}^{\text{DS1\&2}}}$$

 $\begin{aligned} R_{D_s^*/\pi^+} &= 2.76 \pm 0.33 \pm 0.30 \pm 0.16 \\ R_{D_s^{*+}/\pi^+} &= 5.33 \pm 0.61 \pm 0.67 \pm 0.32 \\ R_{D_s^{*+}/D_s^+} &= 1.93 \pm 0.24 \pm 0.10 \\ \Gamma_{\pm\pm}/\Gamma &= 0.70 \pm 0.10 \pm 0.04 \end{aligned}$ 

#### **Comparison with previous results and models**



QCD PM (Colangelo, De Fazio) – good agreement, no uncertainties, no prediction for  $\Gamma_{\pm\pm}/\Gamma$ CCQM (M.Ivanov et al) – agrees only for  $R_{D_s^{*+}/\pi^+}$ 

Predictions for  $\Gamma_{\pm\pm}/\Gamma$  are below or around 0.5 while data agree with naïve spin counting 2/3

#### **Comparison with other B-meson decays**



Figure 1: Feynman diagrams for  $B_c^+ \to J/\psi D_s^{(*)+}$  decays: (a) colour-favoured spectator, (b) colour-suppressed spectator, and (c) annihilation topology.

$$R_{D_{s}^{*}/\pi^{+}} \approx \frac{\Gamma(B \to D^{*}D_{s}^{*})}{\Gamma(B \to \bar{D}^{*}\pi^{+})},$$

$$R_{D_{s}^{*+}/\pi^{+}} \approx \frac{\Gamma(B \to \bar{D}^{*}D_{s}^{*+})}{\Gamma(B \to \bar{D}^{*}\pi^{+})},$$

$$R_{D_{s}^{*+}/D_{s}^{*}} \approx \frac{\Gamma(B \to \bar{D}^{*}D_{s}^{*+})}{\Gamma(B \to \bar{D}^{*}D_{s}^{*})},$$

$$R_{D_{s}^{*+}/D_{s}^{*}} \sim \frac{\Gamma(B \to J/\psi K^{*})}{\Gamma(B \to J/\psi K)},$$

 $\Gamma_{\pm\pm}/\Gamma$ 

Assuming that the colour-favoured spectator diagram dominates the decay amplitudes

Assuming that the colour-supressed spectator diagram dominates the decay amplitudes

Can be also compared to  $B_s^0 \rightarrow J/\psi \phi$ 

#### **Comparison with ligher B-meson decays**



Supports the assumtion that the colour-favoured spectator diagram dominates the decay amplitudes



19

### $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$ (FCNC, CKM and helicity suppressed)



$$\begin{split} & \mathcal{B}(\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-) = \mathcal{B}(\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+) \frac{N_{\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-}}{N_{\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+}} \frac{\varepsilon_{\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+}}{\varepsilon_{\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-}} \frac{f_{\mathrm{u}}}{f_{\mathrm{s}}}, \\ & \mathcal{B}(\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-) = \mathcal{B}(\mathsf{B}^0_{\mathrm{s}} \to \mathsf{J}/\psi\phi) \frac{N_{\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-}}{N_{\mathsf{B}^0_{\mathrm{s}} \to \mathsf{J}/\psi\phi}} \frac{\varepsilon_{\mathsf{B}^0_{\mathrm{s}} \to \mathsf{J}/\psi\phi}}{\varepsilon_{\mathsf{B}^0_{\mathrm{s}} \to \mu^+ \mu^-}}, \\ & \mathcal{B}(\mathsf{B}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+) \frac{N_{\mathsf{B}^0 \to \mu^+ \mu^-}}{N_{\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+}} \frac{\varepsilon_{\mathsf{B}^+ \to \mathsf{J}/\psi\mathsf{K}^+}}{\varepsilon_{\mathsf{B}^0 \to \mu^+ \mu^-}} \frac{f_{\mathrm{u}}}{f_{\mathrm{d}}}, \end{split}$$

**CMS PAS BPH-21-006** 

$$\begin{split} \mathcal{B}(\mathrm{B}^0_{\mathrm{s}} \to \mu^+\mu^-) &= \left[ 3.83^{+0.38}_{-0.36} \ (\mathrm{stat}) \, {}^{+0.19}_{-0.16} \, (\mathrm{syst}) \, {}^{+0.14}_{-0.13} \, (f_{\mathrm{s}}/f_{\mathrm{u}}) \right] \times 10^{-9}, \\ \mathcal{B}(\mathrm{B}^0 \to \mu^+\mu^-) &= \left[ 0.37^{+0.75}_{-0.67} \ (\mathrm{stat}) \, {}^{+0.08}_{-0.09} \, (\mathrm{syst}) \right] \times 10^{-10}. \end{split}$$



$${\cal B}({
m B}^0 o\mu^+\mu^-)<1.5 imes10^{-10}$$
 at 90% CL,  
 ${\cal B}({
m B}^0 o\mu^+\mu^-)<1.9 imes10^{-10}$  at 95% CL,

**Released for** 

### $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$ (FCNC, CKM and helicity suppressed)

#### ATLAS, JHEP 04(2019)098





agreement with SM: 2.4  $\sigma$ 



#### agreement with sm: 2.1 $\sigma$



CMS PAS BPH-21-006 Released for ICHEP 2022

Perfect agreement!

Not an anomaly anymore

### $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$ (FCNC, CKM and helicity suppressed)



Good agreement

22

#### Measurement of *b*-quark fragmentation properties in jets using the decay $B^{\pm} \rightarrow J/\psi K^{\pm}$ in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

#### ATLAS, JHEP 12 (2021) 131



- All Pythia fragmentation models give a decent description.
- $\bigcirc$  Herwig7 with dipole parton shower overestimates the low z tail at low  $p_{\text{T}}$ 
  - Iarger fraction of jets arising from gluon splittings
- Sherpa (mainly cluster hadronisation model) differs for very high z



All Pythia fragmentation models give a decent description.

Herwig7 with dipole PS overestimates for p<sub>T</sub><sup>rel</sup> in [1.5, 4.0] GeV at low p<sub>T</sub>
 Sherpa (mainly cluster HM) discrepant for low values of p<sub>T</sub><sup>rel</sup>, gets worse for higher jet p<sub>T</sub>.

# Measurement of *b*-quark fragmentation properties<br/>in jets using the decay $B^{\pm} \rightarrow J/\psi K^{\pm}$ in ppATLAS, JHEP 12 (2021) 131collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector



- Pythia (A14\*) predicts slightly larger <z> and slightly lower <p<sub>T</sub><sup>rel</sup>>
   Both Herwig7 discrepant at 15-20% level in <p<sub>T</sub><sup>rel</sup>> profile
- Sherpa (cluster) disagreeing at 10% to 25% for  $< p_T^{rel} >$

Observation of  $B^0 \rightarrow \psi(2S) K^0_S \pi^+ \pi^-$  and  $B^0_S \rightarrow \psi(2S) K^0_S$  decays EPJC 82 (2022) 499



$$R_{\pi^{+}\pi^{-}} = \frac{\mathcal{B}(B^{0} \to \psi(2S) K_{S}^{0} \pi^{+} \pi^{-})}{\mathcal{B}(B^{0} \to \psi(2S) K_{S}^{0})} =$$
  
0.480 ± 0.013 (stat) ± 0.032 (syst)  
$$\mathcal{B}(B^{0} \to \psi(2S) K_{S}^{0} \pi^{+} \pi^{-}) =$$
  
(13.9 ± 0.4 (stat) ± 0.9 (syst) ± 1.2 (\mathcal{B})) × 10^{-5},

$$R_{\rm s} = \frac{\mathcal{B}({\rm B}_{\rm s}^{0} \to \psi(2{\rm S}){\rm K}_{\rm S}^{0})}{\mathcal{B}({\rm B}^{0} \to \psi(2{\rm S}){\rm K}_{\rm S}^{0})} =$$

$$(3.33 \pm 0.69\,({\rm stat}) \pm 0.11\,({\rm syst}) \pm 0.34\,(f_{\rm s}/f_{\rm d})) \times 10^{-2}$$

 $\mathcal{B}(B^0_s \to \psi(2S)K^0_S) =$ 

 $(0.97 \pm 0.20 \,(\text{stat}) \pm 0.03 \,(\text{syst}) \pm 0.22 \,(f_{\rm s}/f_{\rm d}) \pm 0.08 \,(\mathcal{B})) \times 10^{-5}$ 

#### Observation of $B^0 \rightarrow \psi(2S) K^0_S \pi^+ \pi^-$ and $B^0_S \rightarrow \psi(2S) K^0_S$ decays

#### EPJC 82 (2022) 499



Iterative 1D reweightings done over 2- and 3-body invariant mass distributions

#### No significant exotic narrow structures

#### More data are needed?

#### Observation of $B^0 \rightarrow \psi(2S) K^0_S \pi^+ \pi^-$ and $B^0_S \rightarrow \psi(2S) K^0_S$ decays EPJC 82 (2022) 499



No significant exotic narrow structures

More data are needed?

#### **Prospects**





Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

Run 3: ~300 fb-1 HL-LHC: ~3000 fb-1



 $L_{max} = 25.3 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ 



#### **HL-LHC projection**



### Summary : main messages



**Exciting results on di-charmonia resonances from ATLAS. CMS and LHCb** 2-4 cccc tetraquark candidates actual states and their spin-parities to be clarified

Precision measurements of  $B_c^+$  production and decays the  $B_c^+ / B^+$  ratio decreases with  $p_T$ challenging for theory results on  $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ 

supporting small  $\sigma_{eff,DPS}$  value for di-onia production

First results on triple  $J/\psi$  meson production

 $B_{(s)}^{\phantom{a}0} \rightarrow \mu^{+}\mu^{-}$  measurement with full Run-II statistics good agreement with SM - not an anomaly anymore

**b** quark fragmentation properties with **B**<sup>+</sup> in jets PYTHIA fragmentation gives a decent description

Observation of  $B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$  and  $B_s^0 \rightarrow \psi(2S)K_S^0$  decays no significant exotic narrow structures – more data are needed?

New results with full Run-II and first Run-III data for spring/summer conferences

# Backup

 $J/\psi J/\psi$  ( $\Rightarrow 4\mu$ ) spectrum studied at LHCb using 9 fb<sup>-1</sup> of pp collisions at  $\sqrt{s} = 7, 8, 13$  TeV

Sci.Bull. 65 (2020), 23

Two structures are reported:

- A narrow resonance, X(6900), renamed T<sub>tub</sub>(6900)
- A broad structure near the di-J/ $\psi$  mass threshold

Background contribution for J/ψ pair production:

- Non-Resonant Single Parton Scattering (NRSPS)
- Non-Resonant Double Parton Scattering (DPS)

#### Two signal + background fit models are considered:

- Model 1 (top) poor description of the "dip" at 6.7 GeV
  - background
  - Breit-Wigner for X(6900)
  - two auxiliary Breit-Wigner (near threshold)
- Model 2 (bottom)
  - a "virtual" X(6700) to interfere with NRSPS is added



#### **Preselection:**

- $\chi^2(B_c^+)/N_{dof} < 2$ , where  $\chi^2(B_c^+)$  is the quality of the  $B_c^+$  cascade vertex fit and  $N_{dof} = 8$ .
- $L_{xy}(B_c^+) > 0.3$  mm, where  $L_{xy}(B_c^+)$  is the transverse distance between the primary vertex (PV) and the  $B_c^+$  candidate vertex projected onto the direction of the  $B_c^+$  transverse momentum. The PV is chosen as the one giving the smallest three-dimensional impact parameter of the  $B_c^+$  candidate. To avoid biasing  $L_{xy}$ , the PV position is recalculated after removing any tracks used in the reconstruction of the  $B_c^+$  meson candidate. To remove poorly reconstructed candidates,  $L_{xy}(B_c^+)$  is also required to not exceed 10 mm.
- $L_{xy}(D_s^+) > 0$  mm, where  $L_{xy}(D_s^+)$  is the transverse distance between the  $B_c^+$  vertex and the  $D_s^+$  vertex projected onto the direction of the  $D_s^+$  transverse momentum. To remove poorly reconstructed candidates,  $L_{xy}(D_s^+)$  is also required to not exceed 10 mm.
- $|d_0^{PV}(B_c^+)/\sigma_{d_0^{PV}}(B_c^+)| < 5$  and  $|z_0^{PV}(B_c^+)/\sigma_{z_0^{PV}}(B_c^+)| < 5$ , where  $d_0^{PV}$  and  $z_0^{PV}$  are the transverse and longitudinal impact parameters with respect to the PV, and  $\sigma_{d_0^{PV}}(B_c^+)$  and  $\sigma_{z_0^{PV}}(B_c^+)$  are their respective uncertainties. The uncertainties are calculated from the covariance matrix of the PV and the covariance matrix of the  $B_c^+$  pseudo-track extracted from the cascade vertex fit. These two requirements are used to ensure that the  $B_c^+$  candidate points back to the PV.
- *p*<sub>T</sub>(*B*<sup>+</sup><sub>c</sub>)/∑ *p*<sub>T</sub>(trk) > 0.10, where the sum is taken over all tracks originating from the selected PV, including the tracks of the *B*<sup>+</sup><sub>c</sub> candidate. Due to the characteristic hard fragmentation of *b*-quarks, this requirement removes a sizeable fraction of the combinatorial background while having almost no effect on the signal.

 $p_T(B_c) > 15 \text{ GeV}$   $|\eta(B_c)| < 2$   $p_T(B_c) > 15 \text{ GeV}$   $|\eta(B_c)| < 2$  $p_T($ 

m(K<sup>+</sup>K<sup>-</sup>) within ±7 MeV of m( $\phi$ )<sub>PDG</sub>

in case of  $D_s^* \rightarrow D_s \pi^0 / \gamma : \pi^0 / \gamma$  escapes detection 3 helicity amplitudes for PS  $\rightarrow$  V + V decay: A<sub>00</sub>, A<sub>++</sub>, A<sub>--</sub>



33

#### **BDT selection:**

#### $p_{\rm T}$ of the $D_s^+$ meson candidate, the $L_{xy}(D_s^+)$ variable, and four angular variables:

- $\cos \theta^*(\pi^+)$ , where  $\theta^*(\pi^+)$  is the angle between the pion momentum in the  $K^+K^-\pi^+$  rest frame and the  $K^+K^-\pi^+$  combined momentum in the laboratory frame. The signal distribution of  $\cos \theta^*(\pi^+)$  is flat before kinematic selection because the pseudoscalar  $D_s^+$  meson decays isotropically, but it increases as  $\cos \theta^*(\pi^+)$  approaches +1 for the background events.
- $|\cos^3 \theta'(K^+)|$ , where  $\theta'(K^+)$  is the angle between one of the kaons and the pion in the  $K^+K^-$  rest frame. The decay of the pseudoscalar  $D_s^+$  meson to the  $\phi$  (vector) plus  $\pi^+$  (pseudoscalar) final state results in the spin of the  $\phi$  meson being aligned perpendicularly to the direction of motion of the  $\phi$  relative to the  $D_s^+$ . Consequently, the distribution of  $\cos \theta'(K)$  follows a  $\cos^2 \theta'(K)$  shape, implying a uniform distribution for  $\cos^3 \theta'(K)$ . In contrast, the  $\cos \theta'(K)$  distribution of the combinatorial background is approximately uniform and its  $\cos^3 \theta'(K)$  distribution peaks at zero.
- $\cos \theta^*(D_s^+)$ , where  $\theta^*(D_s^+)$  is the angle between the  $D_s^+$  momentum in the  $B_c^+$  rest frame and the  $B_c^+$  flight direction in the laboratory frame. The distribution of  $\cos \theta^*(D_s^+)$  is uniform for the decays of pseudoscalar  $B_c^+$  mesons before kinematic selection, while it tends to increase towards negative values for the background.
- $\cos \theta'(\pi^+)$ , where  $\theta'(\pi^+)$  is the angle between the  $J/\psi$  momentum and the pion momentum in the  $K^+K^-\pi^+$  rest frame. Its distribution is nearly uniform for the signal processes but peaks towards -1 and +1 for the background.

 $S/\sqrt{S+B}$ 

efficiency of 81%





| Parameter                                         | Value            |                |
|---------------------------------------------------|------------------|----------------|
| $m_{B_c^+}$ [MeV]                                 | $6274.8 \pm 1.4$ | agree with PDG |
| $\sigma_{B_c^+}$ [MeV]                            | $11.5 \pm 1.5$   | agree with MC  |
| $r_{D_{s}^{*+}/D_{s}^{+}}$                        | $1.76 \pm 0.22$  |                |
| $f_{\pm\pm}$                                      | $0.70\pm0.10$    |                |
| $N^{\mathrm{DS1}}_{B^+_c 	o J/\psi D^+_s}$        | $193 \pm 20$     |                |
| $N^{\mathrm{DS2}}_{B^+_c \to J/\psi D^+_s}$       | $49 \pm 10$      |                |
| $N_{B_c^+ \to J/\psi D_s^{*+}}^{\mathrm{DS1}}$    | $338 \pm 32$     |                |
| $N_{B_c^+ \to J/\psi D_s^+}^{ m DS1\&2}$          | $241 \pm 28$     |                |
| $N^{\mathrm{DS1\&2}}_{B^+_c \to J/\psi D^{*+}_s}$ | $424 \pm 46$     |                |

#### **2D** unbinned fit of two subsets simultaneously : results

#### **Systematic uncertainties**

| Source                                            | Uncertainty [%]   |                      |                      | -                        |          |
|---------------------------------------------------|-------------------|----------------------|----------------------|--------------------------|----------|
|                                                   | $R_{D_s^+/\pi^+}$ | $R_{D_s^{*+}/\pi^+}$ | $R_{D_s^{*+}/D_s^+}$ | $\Gamma_{\pm\pm}/\Gamma$ | _        |
| Simulated $p_{\rm T}(B_c^+)$ spectrum             | 1.5               | 1.9                  | 0.4                  | 0.1                      |          |
| Simulated $ \eta(B_c^+) $ spectrum                | 0.7               | 0.7                  | 0.1                  | 0.2                      |          |
| $B_c^+$ lifetime                                  | 0.1               | < 0.1                | _                    | _                        |          |
| $D_s^+$ lifetime                                  | 0.4               | 0.4                  | _                    | _                        |          |
| Tracking efficiency                               | 1.0               | 1.0                  | < 0.1                | < 0.1                    |          |
| Pile-up effects                                   | 1.0               | 1.0                  | _                    | _                        |          |
| $\chi^2/N_{\rm dof}$ cut efficiency               | 3.2               | 3.2                  | _                    | _                        |          |
| Impact parameter cuts efficiency                  | 0.2               | 0.2                  | _                    | _                        | •        |
| BDT cut efficiency                                | 1.3               | 1.3                  | -                    | -                        |          |
| Trigger efficiency                                | 0.6               | 0.6                  | _                    | -                        |          |
| Other $D_s^+$ decay modes                         | 1.6               | 1.6                  | _                    | _                        |          |
| $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ signal fit: |                   |                      |                      |                          | - ·      |
| $D_s^+$ signal mass modelling                     | 1.8               | 0.5                  | 1.3                  | 0.8                      |          |
| $D_s^{*+}$ signal mass modelling                  | 0.6               | 1.2                  | 1.7                  | 2.7                      |          |
| Signal angular modelling                          | 0.4               | < 0.1                | 0.4                  | 0.6                      |          |
| Background mass modelling                         | 6.0               | 9.0                  | 3.2                  | 1.0                      |          |
| Background angular modelling                      | 0.9               | 1.3                  | 2.1                  | 2.4                      |          |
| $B_s^0 \to \mu^+ \mu^- \phi$ triggers             | 0.8               | 0.5                  | 1.3                  | 4.0                      |          |
| $D_s^{*+}$ branching fractions                    | < 0.1             | < 0.1                | < 0.1                | 0.7                      |          |
| $B_c^+ \to J/\psi \pi^+$ signal fit:              |                   |                      |                      |                          |          |
| Signal modelling                                  | 4.2               | 4.2                  | _                    | _                        | <u>/</u> |
| PRD/comb. background modelling                    | 5.8               | 5.8                  | _                    | _                        | N        |
| CKM-suppr. background modelling                   | 1.0               | 1.0                  | _                    | _                        | _        |
| MC statistics                                     | 1.5               | 1.5                  | 1.7                  | 1.5                      | <        |
| Total                                             | 10.8              | 12.6                 | 5.0                  | 5.9                      |          |
| $\mathcal{B}(D_s^+ \to \phi(K^+K^-)\pi^+)$        | 5.9               | 5.9                  | _                    | _                        |          |

| omparison                        | with previ           | ous results,                                                      | models and                         | lighter B-meson de                                     |
|----------------------------------|----------------------|-------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|
| $R_{D_s^+/\pi^+}$                | $R_{D_s^{*+}/\pi^+}$ | $R_{D_s^{*+}/D_s^+}$                                              | $\Gamma_{\pm\pm}/\Gamma$           | Reference                                              |
| $2.76\pm0.47$                    | $5.33 \pm 0.96$      | $1.93 \pm 0.26$                                                   | $0.70 \pm 0.11$                    | ATLAS Run 2                                            |
| $2.90 \pm 0.62$<br>$3.8 \pm 1.2$ | - 10.4 ± 3.5         | $\begin{array}{c} 2.37 \pm 0.57 \\ 2.8^{+1.2}_{-0.9} \end{array}$ | $0.52 \pm 0.20$<br>$0.38 \pm 0.24$ | LHCb Run 1<br>ATLAS Run 1                              |
| 2.6                              | 4.5                  | 1.7                                                               | _                                  | QCD potential model                                    |
| 1.3                              | 5.2                  | 3.9                                                               | _                                  | QCD sum rules                                          |
| $1.29\pm0.26$                    | $5.09 \pm 1.02$      | $3.96 \pm 0.80$                                                   | $0.46\pm0.09$                      | CCQM                                                   |
| 2.2                              | _                    | _                                                                 | _                                  | BSW                                                    |
| $2.06 \pm 0.86$                  | _                    | $3.01 \pm 1.23$                                                   | _                                  | LFQM                                                   |
| $3.45_{-0.17}^{+0.49}$           | _                    | $2.54^{+0.07}_{-0.21}$                                            | $0.48 \pm 0.04$                    | pQCD                                                   |
| 3.7832                           | _                    |                                                                   | 0.410                              | RIQM                                                   |
| $3.257 \pm 0.293$                | _                    | _                                                                 | _                                  | FNCM                                                   |
| $1.67 \pm 0.36$                  | $3.49 \pm 0.52$      | $2.09 \pm 0.52$                                                   | _                                  | $B^+ \to \bar{D}^{*0} D_s^{(*)+} / \bar{D}^{*0} \pi^+$ |

 $0.48\pm0.05$ 

 $0.94 \pm 0.18$ 

 $0.396 \pm 0.023$ 

 $0.429 \pm 0.007$ 

 $0.4774 \pm 0.0034$ 

 $2.21\pm0.35$ 

 $1.402 \pm 0.083$ 

 $1.425\pm0.065$ 

 $6.46 \pm 0.60$ 

 $7.2 \pm 2.1$ 

 $2.92 \pm 0.42$ 

 $B^0 \to D^{*-} D_s^{(*)+} / D^{*-} \pi^+$ 

 $B_s^0 \to D_s^{*-} D_s^+ / D_s^{*-} \pi^+$ 

 $B^+ \rightarrow J/\psi K^{(*)+}$  $B^0 \rightarrow J/\psi K^{(*)0}$ 

 $B_s^0 \to J/\psi \phi$ 

#### **Modified Gaussian**

$$G_{\text{mod}} \propto \exp\left(-0.5 \times t^{1} + 1/(1+t/2)\right)$$

where  $t = |m(J/\psi D_s^+) - m_{B_c^+}|/\sigma_{B_c^+}$ 

 $B_c^+ \rightarrow J/\psi D_s^+$  signal mass shape modelling effects are tested with alternative models for the  $B_c^+ \rightarrow J/\psi D_s^+$  signal  $m(J/\psi D_s^+)$  distribution: a double-Gaussian function and a double-sided Crystal Ball function [34–36], fixing the tail parameters to the values extracted from simulation.

Is it really  $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ ?

#### EPJ C 75 (2016) 1

(not  $B_c^{+} \rightarrow \mu^+ \mu^- \varphi \pi^+, \ \mu^+ \mu^- D_s^+, \ J/\psi \varphi \pi^+$ )



Cascade fit w/o mass constraints

events with 5.9 <  $m(J/\psi D_{s^{+}})$  < 6.4 GeV

 $N(J/\psi) = 568 \pm 28$ 

a lot of  $J/\psi$  in background

 $N(D_{s}^{+}) = 175 \pm 36$ 

non-significantly above  $N(B_c^+ \rightarrow J/\psi D_s^+) + N(B_c^+ \rightarrow J/\psi D_s^{*+})$ 

#### Observation of excited $B_c (\rightarrow B_c \pi^+ \pi^-)$



ATLAS, PRL 113 (2014) 212004

Large  $B_c$  family is expected although only ground state has been known until today

 $B_c^{\pm}(2S)$  6835–6917 MeV  $2S/1S \simeq 0.6$   $2^1S_0 \rightarrow 1^1S_0 + \pi\pi$ 



 $p_{\tau}(\pi) > 4 \text{ GeV}, m(J/\psi)$  constrained to PDG



### Observation of excited $B_c (\rightarrow B_c \pi^+ \pi^-)$ ATLAS, PRL 113 (2014) 212004

 $p_{\tau}(\pi^{\pm}) > 400 \text{ MeV}, m(J/\psi)$  constrained to PDG



Significance from  $\Delta \ln L$  of pseudo-experiments: 5.4  $\sigma$  (local)

5.2 σ ("look elsewhere")

Q = 288.3 ± 3.5 ± 4.1 MeV M = 6842 ± 4 ± 5 MeV

Both mass value and decay mode agree with expectations for  $B_c^{\pm}(2S)$ 



### **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g fragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

### **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g fragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

**Prompt** (not from B decays) – probes specific mechanisms of  $Q\bar{Q}$  system production and transformation to a meson



NRQCD: Color Singlet (CS) and Color Octet (CO) terms. Long-distance matrix elements (LDME) determined from experimental data. Color Singlet Model (CSM) – only CS diagrams. Color Evaporation Model (CEM) – only one LDME.

### **Charmonium production**

Non-prompt (from B decays) – probes open b quark production, g ragmentation and B-decay kinematics FONLL, matched NLO+NLL ("massive" NLO + resummation) GM-VFNS ("massless" NLO + mass-dependent terms)

**Prompt** (not from B decays) – probes specific mechanisms of  $Q\bar{Q}$  system production and transformation to a meson



#### Charmonium production at 13 TeV with 139 fb<sup>-1</sup>

ATLAS-CONF-2019-047

Uses a single-muon trigger, with threshold at 50 GeV, un-prescaled on the full integrated luminosity of Run II, 139 fb<sup>-1</sup>

 $p_T$  range covered: 60-360 GeV for J/ $\psi$  in 11 bins (60-140 GeV for  $\psi$ (2S))

**Rapidity range |y| < 2 covered in three bins** 

Yields for J/ $\psi$  and  $\psi$ (2S), prompt and non-prompt (from B decays), determined using 2D fit (mass and "pseudo-proper" lifetime)

 $\boldsymbol{\tau} = \frac{m L_{xy}}{c P_T}$ 



15

#### **Charmonium non-prompt fractions**



#### **Charmonium non-prompt x-sections**



0.5⊨

60

70 80 90 100

New fragmentation tuning? Fixing of technical FONLL problems at high p<sub>T</sub>?

300

 $p_{_{T}}(\mu\mu)$  [GeV]

200

#### **Charmonium prompt x-sections**



#### Waiting NRQCD predictions for high- $p_T$ charmonium production

#### Measurement of $J/\psi$ production in association with a $W^{\pm}$ boson with pp data at 8 TeV A

#### ATLAS, JHEP 01 (2020) 95





 $\Lambda_b \to J/\psi \; p \; K^{\text{-}}$  signal is seen on the top of

- large combinatorial background
- very large  $B \rightarrow J/\psi K^+ \pi^-$  contribution
- large  $B_s \rightarrow J/\psi K^+ K^-$  contribution
- tails from small  $B \rightarrow J/\psi \pi^+ \pi^-$  and  $B_s \rightarrow J/\psi \pi^+ \pi^-$  contributions

#### *P<sub>c</sub>*<sup>+</sup> at 7 - 8 TeV



1010±140 direct  $\Lambda_b \rightarrow J/\psi, p, K$ 

 $\Lambda_b \rightarrow J/\psi, p, K$  decays analysis: 2 pentaquark hypothesis



 $\chi^2/N_{dof} = 49.0/43 \text{ (p-value} = 0.25)$ 

#### $P_c$ signal parameters and yields from fit:

|    | ĸ  | μ <sup>μ</sup> |
|----|----|----------------|
|    | [  | J/W H          |
| Ab | Pc | p              |

| Parameter            | Value                                                                              | LHCb value                   |
|----------------------|------------------------------------------------------------------------------------|------------------------------|
| $N(P_{c1})$          | $400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$                        | -                            |
| $N(P_{c2})$          | $150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$                          | -                            |
| $N(P_{c1} + P_{c2})$ | $540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$                            | -                            |
| $\Delta \phi$        | $2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad                    | <u></u>                      |
| $m(P_{c1})$          | 4282 <sup>+33</sup> <sub>-26</sub> (stat) <sup>+28</sup> <sub>-7</sub> (syst) MeV  | $4380 \pm 8 \pm 29$ MeV      |
| $\Gamma(P_{c1})$     | $140^{+77}_{-50}$ (stat) $^{+41}_{-33}$ (syst) MeV                                 | $205 \pm 18 \pm 86$ MeV      |
| $m(P_{c2})$          | 4449 <sup>+20</sup> <sub>-29</sub> (stat) <sup>+18</sup> <sub>-10</sub> (syst) MeV | $4449.8 \pm 1.7 \pm 2.5$ MeV |
| $\Gamma(P_{c2})$     | $51^{+59}_{-48}$ (stat) $^{+14}_{-46}$ (syst) MeV                                  | $39 \pm 5 \pm 19$ MeV        |

 $\Lambda_h \rightarrow J/\psi, p, K$  decays analysis: 4 pentaquark hypothesis



Similar fits (no interference, Breit-Wigner amplitudes) has been performed on our data with masses, widths and relative yields of narrow states fixed to LHCb values. Parameters of  $P_c$ (4380) kept free.

ATLAS data is consistent with LHCb Run II results.

#### No pentaquark fits: extended *A*\* decay model



Projection of 2D M(J/ $\psi$ ,p) vs M(J/ $\psi$ ,K) + 1D M(p,K) fit w/o pentaquarks using extended  $\Lambda^*$  decay model (left)

Result of 1D  $\chi$ 2 M(J/ $\psi$ ,p) fit with the same model (right):  $\chi$ <sup>2</sup>/NDF = 42.0/23 **p-val = 9.1 x 10**<sup>-3</sup>

#### This model shows a 'border-line agreement' with data.

J/ψ

 $\Lambda_h$ 

### Measurements of CP violation with $B_s \rightarrow J/\psi \phi$

The time evolution of B<sub>s</sub> meson mixing is characterized by

- $\checkmark$  the mass difference  $\Delta m_s$  of the heavy (B<sub>H</sub>) and light (B<sub>L</sub>) mass eigenstates
- ✓ the CP-violating mixing phase  $\varphi_s$
- ✓ the width difference of  $\Delta\Gamma_s = \Delta\Gamma_L \Delta\Gamma_H$

Interference between the B<sub>s</sub> decays amplitudes to the CP eigenstates  $J/\psi \varphi$  or via mixing gives rise to a measurable CP violating phase  $\varphi_s$ 



New Physics could modify  $\varphi_s$  and  $\Delta \Gamma_s / \Delta m_s$  If new particles contributes to box diagrams

$$PS \rightarrow VV$$
 decay gives orbital angular  $L = 0$  or 2 are  $CP$ -even  
momentum  $L = 0, 1$  or 2  $L = 1$  is  $CP$ -odd 55

### Measurement of the *CP*-violating phase $\phi_s$ in $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV

#### Eur. Phys. J. C 81 (2021) 342 DOI: 10.1140/epjc/s10052-021-09011-0



angular analysis

# Measurement of the *CP*-violating phase $\phi_s$ in $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV



Eur. Phys. J. C 81 (2021) 342 DOI: 10.1140/epjc/s10052-021-09011-0

| $\phi_s$   | = | -0.087 | $\pm 0.036$  | $(stat.) \pm 0$ | 0.021  | (syst.) 1 | rad              |
|------------|---|--------|--------------|-----------------|--------|-----------|------------------|
| $\Gamma_s$ | = | 0.0657 | $\pm 0.0043$ | $(stat.) \pm 0$ | 0.0037 | (syst.) j | ps <sup>-1</sup> |
| $\Gamma_s$ | = | 0.6703 | $\pm 0.0014$ | $(stat.) \pm 0$ | 0.0018 | (syst.) j | ps <sup>-1</sup> |

#### 13 TeV: Data 2015 - 2017

Data 2018 to be included in next publication

Измерение СР-нарушающей фазы  $\phi_s$  и  $\Delta\Gamma_s$  на 100 fb<sup>-1</sup>

В согласии с LHCb, CMS и CM по  $\phi_s$  рассогласование по  $\Delta\Gamma_s$  и  $\Gamma_s$ 

New combination after full Run-2 results publication

# Measurement of the *CP*-violating phase $\phi_s$ in $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV

Eur. Phys. J. C 81 (2021) 342 DOI: 10.1140/epjc/s10052-021-09011-0



**Studies of methodical differences New combination after full Run-2 results publication** 

Problems with lifetime measurements? ATLAS is working on high precision measurement of  $B^o \to J/\psi K^{*0}$  lifetime

#### $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (FCNC) ATLAS, JHEP 10 (2018) 047



polarised K\*'s  $S_i$  – angular coefficients

Full angular analysis Performed in bins of  $q^2 = m^2(\mu^+\mu^-)$ 







### Angular analysis on B $\rightarrow$ K<sup>\*</sup>µµ at 8 TeV



Results are compatible with theoretical calculations & fits

Deviations of about 2.5 $\sigma$  (2.7 $\sigma$ ) from DHMV in P'<sub>4</sub>(P'<sub>5</sub>) in [4,6] GeV<sup>2</sup>

## $b \rightarrow s\ell^+\ell^-$ transitions



 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$  (FCNC) JHEP 10 (2018) 047



Angular observables in  $B \rightarrow K^* \mu \mu$  show about 3.4 $\sigma$  discrepancy



More data are needed!

#### Angular analysis of $B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-$ at CMS

#### JHEP 04 (2021) 124



- The first angular analysis of the  $B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-$  decay is performed;
- In three bins of the dimuon invariant mass squared (q<sup>2</sup>), a 3D fits are performed;
- The muon forward/backward asymmetry  $(A_{FB})$  and  $K^*(892)^+$  longitudinal fraction  $(F_L)$  are consistent with SM predictions;

| $q^2$ (GeV <sup>2</sup> ) | $Y_S$        | $A_{ m FB}$                    | $F_{\rm L}$                   |
|---------------------------|--------------|--------------------------------|-------------------------------|
| 1 - 8.68                  | $22.1\pm8.1$ | $-0.14^{+0.32}_{-0.35}\pm0.17$ | $0.60^{+0.31}_{-0.25}\pm0.13$ |
| 10.09 - 12.86             | $25.9\pm6.3$ | $0.09^{+0.16}_{-0.11}\pm0.04$  | $0.88^{+0.10}_{-0.13}\pm0.05$ |
| 14.18 – 19                | $45.1\pm8.0$ | $0.33^{+0.11}_{-0.07}\pm0.05$  | $0.55^{+0.13}_{-0.10}\pm0.06$ |

• ATLAS earlier performed similar analysis of  $B^0 \rightarrow K^* \mu^+ \mu^-$  decays

JHEP 10 (2018) 047

#### Observation of new bottom-strange baryon $\Xi_b^-(6100)$ in $\Xi_b^-\pi^+\pi^-$ channel at CMS



Topologies with different  $\Xi_b^-$  decay channels



• A narrow resonance  $\Xi_b^-(6100)$  is observed at a  $\Xi_b^-\pi^+\pi^-$  invariant mass of:

 $M = 6100.3 \pm 0.2(stat) \pm 0.1(syst) \pm 0.6(\bar{z}_{b})$ 

- Results are consistent between fully reconstructed channels and partially reconstructed channel with  $\Sigma^0 \rightarrow \Lambda \gamma$
- Upper limit is set 1.9MeV on a natural width of the new state (95% CL)
- New state is consistent with orbitally excited  $\Xi_b$  baryon with spin/parity of 3/2<sup>-</sup>.

### X(3872) production in different collision systems

First evidence using 1.7 nb<sup>-1</sup> of PbPb collisions data (2018) at CMS at  $\sqrt{s_{NN}} = 5.02$  TeV per nucleon pair <u>PRL 128 (2022) 032001</u>

UML fit to extract signal yields for  $\psi(2S)$  and X(3872) Final state:  $J/\psi(\rightarrow \mu^+\mu^-) \pi^+\pi^-$ Significance for inclusive X(3872): 4.2 $\sigma$ 

Prompt fraction estimated with MC studies Yields corrected by acceptance and overall efficiency

Ratio of corrected yields for prompt production in PbPb collisions Q<sup>pp</sup>:

- compatible with 1 (within 1 $\sigma$ )
- compatible with  $Q^{pp} \approx 0.1$  (within  $2\sigma$ )

Much larger data sample expected in Run-3 at LHC in order to improve the measurement and understand the internal structure of X(3872) and the differences of its production mechanism w.r.t.  $\psi(2S)$  kinematical range: 15 < p<sub>T</sub> < 50 GeV/c, lyl < 1.6





#### Lepton Flavour Universality (Violation?)

$$R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)}\mu^+\mu^-)}{\Gamma(B \to K^{(*)}e^+e^-)} \qquad \mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0}e^+e^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

ATLAS potentially can do  $R(K), R(\phi), R(pK) = BR(\Lambda_b \rightarrow$  $pK\mu\mu$ )/BR( $\Lambda_b \rightarrow pKee$ )

In 2018, a di-electron high-level trigger implemented and being analysed now





Phys. Rev. Lett. 122 (2019) 191801  $2.5\sigma$  from the SM LHCb



Aiming at R(K\*) measurement

Run-3 data will add statistic

#### Lepton Flavour Universality (Violation?)

$$R_{D^*} = \frac{\Gamma(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu_{\tau}})}{\Gamma(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu_{\mu}})}$$

 $\sim$ 

ATLAS added dedicated trigger branches for Run 3:



#### **Prospects**



Shutdown/Technical stop Protons physics Ions Commissioning with bear

Ions Commissioning with beam Hardware commissioning/magnet training

Run 3: ~300 fb-1 HL-LHC: ~3000 fb-1



Last updated: January 2022