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Введение

The process of photon propagation in a magnetized
equilibrium e+e− plasma taking into account the resonance in
the Compton scattering reaction is considered.

β = B/Be . 1, Be = m2/e.
The natural system of units is used: c = ~ = kb = 1.

Formulation of the problem. Find a solution of the kinetic
equation for the distribution function of photons in a
magnetized non relativistic plasma for the process of Compton
scattering, taking into account the resonance on a virtual
electron.

Previously, a similar problem was set in the work:
- Mushtukov A.A. et al. Compton scattering S-matrix and cross
section in strong magnetic field Phys. Rev. D. 2016. Vol. 93.
- Mushtukov A.A. et al. Statistical features of multiple Compton
scattering in a strong magnetic field at arxiv 2204.12271v1 2022
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An equilibrium plasma is considered at a temperature
T � m and field B . Be directed along the z axis. The
photon distribution function is non-equilibrium.

Stationary case ∂f
(λ)
ω
∂t = 0

Then the kinetic equation given by:

(~n, ~5r f
(λ)
ω ) =

2∑
λ′=1

∫
dWλ→λ′×

×{fE ′(1− fE )f
(λ′)
ω′ (1 + f (λ)ω )− fE (1− fE ′)f (λ)ω (1 + f λ

′
ω′ ) .}

λλ′ = 1, 2 – polarization states of photons.
fω, fω′ – distribution functions of the final and initial photons.

fE , fE ′ – distribution equilibrium functions of the final and initial
electrons.

dWλ→λ′ – differential photon absorption rate (Chistyakov M. V.,
Rumyantsev D. A., Yarkov A. A. J.Phys: Conf. Ser. IOP Publishing,
2020. P. 1690 012015).
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Under these conditions, the energies of the initial and final photon
will be close to each other. Let Expande the right side of the kinetic
equation in terms of ∆ω = ω − ω′ � ω, where

ω′ =
1

1− x ′2

(
m + ω(1− xx ′)−

√
(m + ω(1− xx ′))2 − 2eB(1− x ′2)

)
,

where x = cos θ, x ′ = cos θ′. θ, θ′ - angle between photon
momentum and magnetic field. We can use the technique
developed in the works of A.S. Kompaneets 1956 and
Y. E. Lyubarsky 1988 for Magnetic Field:

∂f (λ)(z , x)

∂z
=

1

x

2∑
λ′=1

∫ 1

−1
dx ′ϕλλ

′
ω (x , x ′)(f (λ

′)
ω (z , x ′)− F (λ)

ω (z , x))

where

F (λ′)
ω (z ′, x ′) = f (λ

′)
ω (z ′, x ′)− ∆ω

T

[
T
∂f

(λ′)
ω (z ′, x ′)

∂ω
+ f (λ

′)
ω (z ′, x ′)

]
+

+
1

2

∆2ω

T 2

[
T 2∂

2f
(λ′)
ω (z ′, x ′)

∂ω2
+ 2T

∂f
(λ′)
ω (z ′, x ′)

∂ω2
+ f (λ

′)
ω (z ′, x ′)

]
,
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ϕλλ
′

ω (x , x ′) =
ne

32πmω

∑
s′′=±1

∫ 2π

0

dη

2π
×

×

∣∣∣Me1→e0γ(λ
′)

∣∣∣2 ∣∣∣M
e0γ(λ

′)→e
(s′′)
1

∣∣∣2
[ω2(1− x2) + 2ωm − 2eB]2 + (Γs′′

1 P0/2)2
×

×
(m + ω − ωxx ′ −

√
m + ω − ωxx ′)2 − x ′22eB√

(m + ω − ωxx ′)2 − x ′22eB

Where Γs′′
1 – total electron absorption width.

E ′′1 Γ±1 '
e2(eB)2

πM1

1

M1 ±m

∫ ζ

0
dxe−x

1− ζ · x√
x2 − ζ · x + 1

Here Mn =
√
m2 + 2 · eBn and ζ =

M2
1+m2

eB
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The solution of the equation can be formally represented as follows

f (λ)ω (z , x) = f0ωe
−χ(λ)

ω (x)·z +
1

x

∫ z

0
dz ′
∫ 1

−1
dx ′e−χ

(λ)
ω (x)·(z−z ′)×

× ϕλλ′ω (x , x ′)F (λ′)
ω (z ′, x ′) ,

where f0ω = [exp(ω/T )− 1]−1 – photon equilibrium function.

χ(λ)
ω (x) ≡ 1

x

∫ 1

−1
dx ′
{
ϕλ1ω (x , x ′) + ϕλ2ω (x , x ′)

}
.
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Using the expansion in Legendre polynomials

f (λ)ω (z , x) =
∞∑
`=0

A
(λ)
` (z , ω)P`(x) ,

and Laplace transform, we obtain the system of differential
equations:

2

2`+ 1
A
(λ)
` (s, ω) =

∫ 1

−1

f
(λ)
0ω

s + χω(x)
P`(x)dx+

+
∞∑
`′=0

1

x

∫ 1

−1
dx ′
∫ 1

−1
dx

P`(x)P`′(x
′)

s + χ
(λ)
ω (x)

ϕλλ
′

ω (x , x ′)F (λ′)
`′ (s, ω) ,

where

F (λ′)
`′ (s, ω) = A

(λ′)
`′ (s, ω)− ∆ω

T

[
T
∂A

(λ′)
`′ (s, ω)

∂ω
+ A

(λ′)
`′ (s, ω)

]
+

+
1

2

∆2ω

T 2

[
T 2∂

2A
(λ′)
`′ (s, ω)

∂ω2
+ 2T

∂A
(λ′)
`′ (s, ω)

∂ω2
+ A

(λ′)
`′ (s, ω)

]
.
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A
(λ)
`′ (s, ω) =

∫ ∞
0

A
(λ)
`′ (z , ω)e−szdz ,

Finally, the distribution functions of photons for two possible
polarization states λ = 1, 2 can be represented as follows:

f (λ)ω (z , x) =
1

2πi

∞∑
`=0

P`(x)

∫ σ+i∞

σ−i∞
ds · eszA(λ)

` (s, x)

8 / 9



Выводы

- The solution of the kinetic equation for finding the distribution
function of photons of two possible polarizations in an
equilibrium e+e− plasma in a relatively strong magnetic field
in the cold plasma approximat.ion and taking into account
resonance on a virtual electron is considered.

- Using the Laplace transform and the expansion of the
distribution function in Legendre polynomials, the problem is
reduced to a system of differential equations.

- The resulting distribution function is represented as inverse
Laplace Transform.
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