VI International Conference on Particle Physics and Astrophysics

Muon puzzle: possible approach to the solution

R.V. Nikolaenko, A.A. Petrukhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) rvnikolaenko@mephi.ru

Introduction

The so-called Muon Puzzle is the excess of the events with high multiplicity of cosmic muons in comparison to the MC simulation results.

• Simulation tools include hadron interaction models that use the extrapolation of the experimental data and very different approaches of nucleus-nucleus interactions treatment.

ICPPA 2022

2

• As a possible solution to the Muon Puzzle, new physical processes in nucleus-nucleus interactions could be introduced.

Models of hadronic and nucleus-nucleus interactions

CORSIKA (COsmic Rays Simulation for KAscade) – program for Monte-Carlo simulation of the generation and development of extensive air showers in the atmosphere.

Model	Used in CORSIKA	Spectators fragmentation	Special treatment for A-B int.	Leptons production in first int.	Gamma production in first int.
EPOS-LHC	\checkmark	Intense (<n<sub>nuc> = 0.4)</n<sub>	\checkmark	~10 ⁻⁴	~10 ⁻¹
QGSJET-II- 04	\checkmark	Moderate (<n<sub>nuc> = 1.4)</n<sub>	\checkmark		—
SIBYLL-2.3d	\checkmark	Moderate (<n<sub>nuc> = 1)</n<sub>	Superposition of N-N int.	~10 ⁻⁵ (probably Pi decays)	~10 ⁻¹
Pythia8.3 (Angantyr)	*	(N _{nuc} = 2)	\checkmark	>1!	~10 ²

*Pythia6 is used in CORSIKA for decays of charmed particles only

- Energy loss of the nuclei before the first hadronic interaction?
- Collective interactions, QGP, anisotropy ...

Quark gluon plasma with high angular momentum

In high energy non-central nucleus-nucleus collisions formation of the quark gluon matter blob (QGMB) with high angular momentum is possible.

Suppression of light particles production during QGMB expansion

ICPPA 2022

Implementing Pythia8.3 for nucleus-nucleus interactions in CORSIKA

Implementing Pythia8.3 for nucleus-nucleus interactions in CORSIKA

 μ/e – ratio comparison with standard QGSJET-II simulation

Comparison of the mean energy of EAS muons with standard QGSJET-II simulation

ICPPA 2022

Forcing heavy particles production in the first interaction

Ratio of the distributions of particles' densities

(Pythia8 with t-quarks against default Pythia8)

Ratio of the distributions of particles' densities (Pythia8 with t-quarks against standard QGSJET-II)

Nitrogen-nitrogen, $E_0 = 10^{17} \text{ eV}$ Nitrogen-nitrogen, $E_0 = 10^{17} \text{ eV}$ D(Pythia with top) / D(QGSJET-II-04) 1.05 D(Pythia with top) / D(Pythia default) TopAll = on in Pythia 1.06 All particles Muons 1.04 e⁺, e⁻ 1.00 1.02 Gammas Hadrons 1.00 0.98 0.95 0.96 All particles Muons 0.94 e⁺, e⁻ Gammas 0.90 0.92 Hadrons 0.90 0.0 0.5 2.5 3.0 3.5 0.5 2.5 3.0 3.5 1.0 2.0 4.0 0.0 1.0 1.5 2.0 4.0 1.5 lg(r), mlg(r), m

Forcing heavy particles production in the first interaction

Ratio of the distributions of EAS surface energy (Pythia with t-quarks against standard QGSJET-II)

Nitrogen-nitrogen, $E_0 = 10^{17} \text{ eV}$ Nitrogen-nitrogen, $E_0 = 10^{17} \text{ eV}$ 1.10 -TopAll = on in Pythia $\rho(Pythia with top) / \rho(QGSJET-II-04)$ $O(Pythia with top) / \rho(Pythia default)$ 1.00 All particles 1.05 Muons e⁺, e⁻ Gammas .00 0.95 All particles 0.95 Muons e⁺. e⁻ Gammas Hadrons 0.90 0.90 3.5 0.5 0.5 2.5 3.0 1.0 1.5 2.0 2.5 3.0 3.5 0.0 1.0 1.5 2.0 4.0 0.0 lg(r), mlg(r), m

Ratio of the distributions of EAS surface energy (Pythia with t-quarks against default Pythia)

Forcing heavy particles production in the first interaction

Comparison of the mean energy of EAS

 μ/e – ratio comparison

Missing EAS energy

Nitrogen-nitrogen, $E_0 = 10^{17} \text{ eV}$

	QGSJET-II-04	Pythia8 (Angantyr)	Pythia8 with top	Ratio Pythia/QGSii, %	Ratio Pythia(top)/ QGSii, %
Total EAS energy [GeV]	$1.71 \cdot 10^{7}$	$1.69 \cdot 10^{7}$	$1.8 \cdot 10^{7}$	98.8	105.2
Total muons energy [GeV]	$9.38 \cdot 10^{6}$	$9.14 \cdot 10^{6}$	9.82 · 10 ⁶	97.4	104.7
Total electrons energy [GeV]	$2.18 \cdot 10^{6}$	$2.23 \cdot 10^{6}$	$2.3 \cdot 10^{6}$	100.2	105.5
Total gammas energy [GeV]	$3.75 \cdot 10^{6}$	$3.84 \cdot 10^{6}$	$4.0 \cdot 10^{6}$	100.2	106.7
Total neutrinos energy [GeV]	$\sim 5.2 \cdot 10^{6}$				
Total hadrons energy [GeV]	$1.82 \cdot 10^{6}$	$1.72 \cdot 10^{6}$	$1.87 \cdot 10^{6}$	94.5	102.7

Conclusion

- Pythia8 with Angantyr model fits well for nucleus-nucleus interactions in EAS simulation. It also has some interesting features (leptons and gamma production, spectator nuclei treatment) that may be useful for cosmic rays studies.
- It is hard to explain the observed excess of muons by implementing models with simply heavier secondary particles spectrum (in the framework of considered models).
- Other consequences of equilibrium state of relativistic matter in nucleusnucleus collisions should be studied thoroughly: anisotropy of particles momenta, as a mechanism of the variation of spatial distribution functions, more intense gamma production, etc.

Thank you for your attention!