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Goals and motivation

@ Highly granular calorimeters provide some additional information about the structure of hadronic
showers.

@ In non-compensating hadronic calorimeters the energy resolution for hadronic showers can be
improved by applying software compensation techniques.

@ The goal is to improve the energy resolution using the information about shower substructure in
highly granular calorimeter.

@ The current presentation focuses on implementation of global compensation method based on
neural network technology in Particle Flow Approach. The global compensation means that
variables used characterise a shower as a whole.

@ (Local) Software compensation in Particle Flow reconstruction
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https://arxiv.org/abs/1705.10363

Software, simulations and event selection

iLCSoft
Geant4 hadronic model: FTFP_BERT
Isotropic Geant4 Particle Gun

Particles are single KOL with energies: 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 120 GeV

There are 5000 and 10000 events for each energy point

Nhits
Eevent in event is a sum of hit energies (in GeV) in ECAL and HCAL E.yene = > Ehit;

hi
i=1

The calibration is standard from iLCSoft
No clustering is applied

Cuts:
Absolute value of pseudorapidity is up to the end of the calorimeter system (|7| < 3.0)
Events rejected when both (ecal + hcal) CalorimeterHit collections are empty

If primary particle decays before calorimeter system = skip an event (about 5-10% particles from
full set are interacting or decaying before calorimeter)
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Input features for neural network

ECAL and HCAL separately:

@ Reconstructed energy in each calorimeter

MUON SYSTEM:

o . Reconstructed energy in muon system
Number of hits in each calorimeter

[

o ) Average energy of hits in muon system
Average energy of hits in each calorimeter o
Number of hits in muon system

Average time of hits in muon system

e 6 6 o o

°
@ Average time of hits in each calorimeter
@ Radius of shower in each calorimeter

°

. . Average number of layers in muon system
Average number of layers in each calorimeter
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Preprocessing

@ 17 input features and 1 target (true energy from mc collection)
@ no data normalization

@ 26 energies - 10000 = 260k events
o after cuts we have about 228k events (full set)

e train is about 160k events (70% of full set)
o validation is about 68k events (30% of full set)
@ events are selected randomly without intersections

@ test is 29 energy samples with 5000 events on each energy point
o further results of DNN performance are for test set
@ events are selected randomly without intersections

The full sample contains single hadron events in all energy range studied (except for 7, 45 and
120 GeV). The last three energies only for test of DNN.
Results are shown for the test subsample.
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Neural network structure and hyperparameters

Keras library RelU

Architecture: . R(z)=maz(0, 2)

o 1 input layer, 3 hidden layers, 1 output layer

o Number of neurons: 17 /128 /64 /32 /1

e Activation function: ReLU for hidden layers; !
linear (f(y) =y) for output layer

Optimizer: ADAM or NADAM & = ! : .
Learning rate (Ir): from 0.1 to 0.0000001 B S \
A 5 b Hidden layers Y, _____)
Batch size (bs): 1, 2, 4, 8, 16 and 32 i H
= Events come in batches iteratively
Number of epochs: 10-200
Optimized DNN: NADAM, bs=4,
Ir=0.000001, epochs=50

[

E iOutputE

(]

Loss function: modified MSE " /P J
(Xpredithruei)2 ;

N
- 1.
Loss = ; 0.442 Xtrue; +0.042-Xtrue? '

i= Further results shown for optimized DNN
Xpred — prediction, Xtrue — from MC collection.
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DNN performance for 1, 5, 20 and 40 GeV

Standard reconstruction, DNN reconstruction (test sample)

Comparison of distributions for 1 GeV Comparison of distributions for 5 GeV
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The distribution width is improved. The mean has not shifted.
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DNN performance for 90 and 120 GeV
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Standard reconstruction, DNN reconstruction (test sample)

Comparison of distributions for 90 GeV
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Linearity

Single KOL in ILD
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Mean and sigma from hist90 of the energy distributions.
The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network improves linearity of the response in the energy range 2—-60 GeV.
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Relative energy resolution
Single KOL in ILD
g0.45 L ) A B

Fit range: 3-70 GeV
—— Standard reco
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Mean and sigma from hist90 of the energy distributions.
The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network improves relative energy resolution by about 25%.
F= G Ere )2
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Preliminary results

Reconstruction A, VGeV B C, GeV
Standard 0.431+0.002 0.0432+0.0013 0.0
DNN 0.303+0.003 0.0478+0.0013 0.0

@ The neural network shows noticeable improvement in energy resolution

@ ldeal case, which not will be used in real reconstruction
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Particle Flow Approach study

@ |t is necessary to implement the neural network technique in PandoraPFA processor
to extract calorimeter hits from PFO objects (GitHub: PandoraPFA/LCPandoraAnalysis)

Two new functions in the PandoraPFA:

e input features for DNN application
o DNN architecture from scratch - for weights from trained DNN

Neutral hadron PFQO’s only

Several events are empty after PandoraPFA processor (=100 events per energy point)
New DNN was trained on all PFO hits

The same structure of the DNN: architecture and hyperparameters

Two options were studied:
o DNN applied to joint neutral hadron PFO hits
o DNN applied to each neutral hadron PFO and summed up
(if energy of neutral hadron PFO is 1.5 GeV and more)
Cuts:
@ Full set is about 228k events, about 210k is set after cut for low energies:
Eevent >= (Etrue —-3-06- V Etrue) and Eevent >=10.2
@ Train is about 147k events (70% of set) and validation is about 63k (30% of set)
o Cut before hist90 procedure is Egyent >= 0.3 - Etrye
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Linearity for PFA

trained on CALO hits
Single KOL in ILD
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Mean and sigma from hist90 of the energy distributions.

The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network techhique improves linearity of the response in case of trained on
PFO hits (right plot). The method shows additive behavior, except low energy points.
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Relative energy resolution for PFA

trained on CALO hits trained on PFO hits
Single KOL in ILD Single KOL in ILD
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Mean and sigma from hist90 of the energy distributions.
The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network techique improves relative energy resolution in both cases, especially
for training on PFO hits (right plot). The method shows additive behavior.
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Summary

PFA reconstruction A, VGeV B C, GeV
Standard 0.423+£0.005 | 0.0311+0.0038 0.0
DNN (trained on CALO hits)

Applied to all PFO hits 0.383+£0.003 | 0.0322+0.0024 0.0
Applied to separate clusters 0.391+0.004 | 0.02874+0.0036 0.0
DNN (trained on PFO hits)

Applied to all PFO hits 0.328+0.004 | 0.0415+0.0020 0.0
Applied to separate clusters 0.335+0.005 | 0.03944+0.0029 0.0

Hadronic showers from KOL in the range 1-120 GeV are simulated in ILD

The neural network from Keras package was trained and tested

The neural network shows noticeable improvement in energy resolution

The neural network technique implemented in PandoraPFA processor

The preliminary results also show improvement in energy resolution

Suggested method shows additive behavior
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Backup slides



The primary particle produces several clusters.



The hadronic shower leaks into muon system.



Energy distribution for single hadron: 1, 5, 20 and 40 GeV
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Energy distribution for single hadron: 90 and 120 GeV

Reconstructed energy for 90 GeV Reconstructed energy for 120 GeV
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Energy distributions in ecal and hcal: 5 and 90 GeV

For 5000 sample

Reconstructed energy in ecal for 5 GeV Reconstructed energy in hcal for 5 GeV
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Distribution of number of hits: 5 and 90 GeV
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Mean hit energy in ecal and hcal: 5 and 90 GeV
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Mean hit time: 5 and 90 GeV

For 5000 sample
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Energy

weighted radius of shower: 5 and 90 GeV

Number of events

Number of events

800

Radius of shower in ecal for 5 GeV

Entries
Mean

Std Dev

a3

| L ol
1000 1500 2000 2500

Radius of shower in ecal for 90 GeV

I
3000
Radius

Entries
Mean

o

E

StdDev_ 2499

I L L L
500 1000 1500 2000 2500

I
3000
Fadius

0

3
El

For 5000 sample

Number of events

Number of events

400

30

‘.“[4 ‘

100

Radius of shower in hcal for 5 GeV

S L L I
500 1000 1500 2000 2500

Radius of shower in hcal for 90 GeV

]
)

Radius of shower for ecal and hcal in mm
Distance between each hit position and straight line of IP (0,0,0) and CoG (x,y,z)

Energy weighted radius of shower =

Npits . . .
> DIStaI‘ICE((IP,COG),I‘IIt,pOSItIOI‘I,')~Ehll’,‘

i=1

2l L T hende L |
100 200 300 400 500 600 700

Nhits

E Ehit;
i=1

EF-| SR RTNE R ARTR R

a3
2759
267



Weighted number of layer: 5 and 90 GeV
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Energy and hit energy in muon system: 5 and 90 GeV

For 5000 sample
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Number of hits and hit time in muon system: 5 and 90 GeV

For 5000 sample
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Weighted number of layer in muon system: 5 and 90 GeV

Number of events

For 5000 sample
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MC and PFO for analysis

For 5000 sample

Energy from Particle Gun for 5 GeV PFO energy for 5 GeV
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Mixed energy distribution for training of DNN
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Dependence PFO number on different types of energy

Dependence of PFO number on energy from Particle Gun Dependence of PFO number on reconstructed energy
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Number of events after cuts

Energy 1

N

%

7727

77.27

Energy 1

%

3850

77.00

3 5
8492 8632
8492 86.32

Full set of 10000 events
40

10 30
8814 8912
88.14 89.12

8858

88.58

50

8897

88.97

70

8895

88.95

Similar efficiencies for all energies, slightly lower for 1 GeV

3 5
4242 4344
84.84 86.88

Full set of 5000 events

10 30
4342 4446
86.84 88.92

40

4463

89.26

50

4439

88.78

70

4456

89.12

90

8950

89.50

90

4431

88.62

120

8964

89.64

120

4455

89.10



Correlation between features and target

. o

E 033 | 041
0,015 {0,0076-0.069| -0.12 [ 0.31 | 022 | 0.33 | 0.
0.023 (101561 0.017 | 0.36 | -0.14 |0.00770.0057] 0.
. 065 9

Target: energy from Particle Gun (MC collection)

The largest positive correlation with energy in ECAL, energy in HCAL and average time of hits in muon
system; the largest negative correlation with shower radius in HCAL and average time of hits in HCAL




Correlation between variables

eecal ehcal muon_energy etime htime eradius hradius elayer hlayer muon_time muon_layer mc_energy

eecal 1.000000 0.131429 -0.055831 -0.115008 -0.014099 -0.202531 0.027832 0.172889 -0.152756 0.039403 0.028724 0.585834

ehcal 0.131429 1.000000 0.155594 0.121166 -0.257103 0.085121 -0.299339 0.101742 0.327006 0.405211 0.418303 0.852807
muon_energy -0.055831 0.155594 1.000000 -0.049307 0.014769 -0.007633 -0.068726 -0.120089 0.306266 0.224953 0.334404 0.212033
etime -0.115008 0.121166 -0.049307 1.000000 0.023430 0.561189 0.016539 0.364091 -0.137274 0.007689 0.005676 0.035826
htime -0.014099 -0.257103 0.014769 0.023430 1.000000 0.026714 0.553583 -0.085131 -0.065480 -0.067692 -0.072625 -0.194386
eradius -0.202531 0.085121 -0.007633 0.561189 0.026714 1.000000 0.163117 0.041665 0.008397 0.018068 0.019396 -0.030379
hradius  0.027832 -0.299339 -0.068726 0.016539 0.553583 0.163117 1.000000 -0.052394 -0.166443 -0.141630 -0.150124  -0.222829
elayer 0.172889 0.101742 -0.120089 0.364091 -0.085131 0.041665 -0.052394 1.000000 -0.323224 -0.054740 -0.062230 0.144776
hlayer -0.152756 0.327006 0.306266 -0.137274 -0.065480 0.008397 -0.166443 -0.323224 1.000000 0.336597 0.390446 0.229130
muon_time  0.039403  0.405211 0.224953 0.007689 -0.067692 0.018068 -0.141630 -0.054740 0.336597 1.000000 0.769852 0.375865
muon_layer 0.028724 0.418303 0.334404 0.005676 -0.072625 0.019396 -0.150124 -0.062230 0.390446 0.769852 1.000000 0.400483
mc_energy 0.585834 0.852807 0.212033 0.035826 -0.194386 -0.030379 -0.222829 0.144776 0.229130 0.375865 0.400483 1.000000



Example of systematic uncertainty

Number of entries

Systematic uncertainty of DNN response for 120 GeV

18— hist1_copy
= Entries 50
16— Mean -0.03477

& o ® B N 0w
T[T T[T [ TT T[T T[T [TTT]TT

)

J

M
90.5 -04 -03 -02 -041 0 0.1 0.2 0.3 0.4 0.5
Response

Example histogram for response at 120 GeV

__ Ereco—Etrue
Response = ==Z— =<
@ 50 runs with the same DNN

Fluctuations due to random selection of
train/validation samples and random
initialization of weights of DNN

Response (1)
Absolute energy resolution (2)

Relative energy resolution (3)

@ 29 energies -3 = 87 histograms

Separate uncertainty for each energy point



Techniques of resolution estimate

Techniques:
HIST: mean and rms of the full distribution (standard ROOT procedure is used)
HIST90: mean and rms of the 90% of the full distribution
HIST95: mean and rms of the 95% of the full distribution

Fit: mean and sigma of Gaussian fit of the full distribution

Legends:
@ E,eco is mean from fit or histogram
o AE,e, is o from fit or rms from histogram

@ Eie is energy from generator



Relative energy resolution for different techniques

Relative energy resolution

8 0.37 T
£ Cole —— fit (w/o errors)
£ 0_25: —— hist90 (w/o errors)
N hist95 (wio errors) fit histo0  histg5  hist
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Eiue GeV
A
(&7 + 8

The better resolution is for RMS90 (hist90). No noise is added (C = 0).
Relative resolution fit with 3 terms in backup.



RMS90 procedure

RMS90:
@ Find a bin of a mean of the histogram
o Define 90% of the histogram as Ngg = 0.9 - (hist — GetEntries)

e RMS formula = ZZW';VXZ - (%)2
where x is GetBinCenter (bin of mean plus/minus step of iteration) and w is GetBinContent (bin of
mean plus/minus step of iteration)

@ Sums are calculated by moving symmetrically to the left and to the right bin-by-bin from the mean.

The calculation stops when number of events reaches Ngg




Example of RMS90 for 5 and 90 GeV

Comparison for full distribution and 90% of distribution for 5 GeV G ison for full distribution and 90% of distribution for 90 GeV
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This method extracts the true values of the mean and width of the distribution.



Fit procedure

@ Take mean and rms from full histogram

@ Perform Gaussian fit in [mean £ (range - rms)], where range is values from 1.0 to 2.5 = array of
means and o's from Gauss fits

o Fit is accepted if NX—;F <15

2
: : : : - X
@ Final fit result is that with minimum NOF



RMS90 code example

It depends how you define the central 90% (model dependent)
Below a brute force example.

Rene

[codelvoid rms90(TH1 h) {
TAxis axis = h->GetXaxis();

Int_t nbins = axis->GetNbins();

Int_timean = axis->FindBin(h->GetMean();
Double_t entries =0.9h->GetEntries();
Double_t w = h->GetBinContent(imean);
Double_t x = h->GetBinCenter(imear);
Double_t sumw = w;

Double_t sumwx = wx;

Double_t Sumwx2 = wxx;
for (Int_t i=:i<nbins;i++) {

if (5>0){

w = h->GetBinContent(imean-i);
x = h>GetBinCenter(imean-i);
sumw += w;

Sumwx += wx;

SUMWX2 += WXX;

}

if (i<= nbins) {

w = h->GetBinContent(imean+i);
x = h->GetBinCenter(imeant+);
sumw +=w;

Sumwx += wx;
SUMWX2 += wxx;

if (sumw > entries) break;
}

X = sumwx/sumw;

Double_t rms2 = TMath::Abs(sumwx2/sumw -x'x);

Double_t result = TMath::Sqrt(rms2);

printf(*RMS of central 90% = %g, RMS total = %g\n" result h->GetRMS());

void central90() {
TH1F *h = new TH1F(*h",“test”,100,-4,2);
h->FillRandom(“gaus”,10000);

ms90(h);

e The code is from: https://root-forum.cern.ch/t/rms90



Linearity for different techniques

Linearity
s 02¢
w” - —— fit (stat)
= —— hist90 (w/o errors)
w C
s 01f —— hist95 (w/o errors)
< - —— hist (stat)
0.05—
o P !
-0.05 4
oty
—o.15f—
R N R N R Cl
02 10 20 30 40 50

6
E, . GeV

true?

Good coincidence of fit, RMS90 and RMS95 above 15 GeV.
The worst linearity for fit (in agreement with physics).



Absolute energy resolution for different techniques

AE ¢, GeV

©

Absolute energy resolution

g —— fit (stat) i
8; —— hist90 (w/o errors)
7t | —— hist95 (w/o errors)
sf— —— hist (stat) '
s |
e ! _
s . et '
0 ‘
.
0 g 20 a0 0 e 50

E, . GeV

true?

Fit and RMS90 look similar.
RMSO5 in agreement with fit and RMS90 before 20 GeV.



Relative energy resolution for different techniques

Relative energy resolution

s 03 ,
uf Cot —— fit (stat)
uj 0os— | —— hist90 (w/o errors)
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: poo .
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0
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true?

The better resolution is for RMS90. (RMS90 is hist90)



Fit for relative energy resolution

Relative energy resolution

- 3 terms

g 03Ty
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Absolute energy resolution

Single KOL in ILD
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Mean and sigma from hist90 of the energy distributions.
The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network improves absolute resolution.




Absolute energy resolution for PFA

trained on CALO hits
Single KOL in ILD

AE, ¢, [GeV]
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trained on PFO hits
Single KOL in ILD

9 T N R B T i
8— | ——— Standard PFO reco -
E | —=—- Modified PFO reco, all hits ¢ B
7:7 -------------- Modified PFO reco, cluster hits ‘ E
6- E
5 i . - 7:
- . . |
4= [ =
s i
2— ot =
C .#-' =
1 f' + —
0 R P I B [ P =
0 20 40 60 80 100 120
Eye [GeV]

Mean and sigma from hist90 of the energy distributions.
The training set didn't have energies: 7, 45 and 120 GeV. But they are in good agreement with other
energy points. The neural network technique improves absolute resolution in both cases.

The method shows additive behavior.



Absolute difference between RECO and DNN

( AEann - AEreco ) / AEreco
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Absolute difference (Single KOL in ILD)
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Absolute difference between RECO and DNN

AEann / AEr&co
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Absolute difference 2 (Single KOL in ILD)
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SHAP

nhits_hcal [IE——

nhits_ecal _
muon_nhits _
hradius -
hlayer .
elayer .
etime .
htime .
eradius I
muon_layer I
muon_time I
energy_hit_hcal I
muon_energy |
energy_hit_ecal |

muon_energy_hit | . Class 0

o 1 2 3 4 5 [ 7 B
mean(|SHAP value|) (average impact on model output magnitude)

The most important are the first six features



TO DO

@ Try new version of iLCSoft
@ Understand figures of merit for DNN
@ Study the effect on jet energy resolution

@ Try the global compensation variables from CALICE Analysis Notes
(https://arxiv.org/abs/1207.4210)



https://arxiv.org/abs/1207.4210

