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Motivation and goal

Motivation and goal

Percent-level precision of jet energy measurements is important for future collider experiments
aimed at searches for New Physics beyond SM

modern trend: particle flow (PF) reconstruction based on highly granular calorimeter systems and
high-precision tracking

bottleneck for jet resolution: contribution from neutral hadrons

Hadronic energy resolution

complex structure of hadronic showers results
in significant fluctuations of energy deposition
due to fluctuations of electromagnetic fraction
(with dominated contribution from π0s)

possible solutions for improvement:

hardware compensation (compensating
calorimeters, e.g. ZEUS)
software compensation algorithms,
e.g. in [JINST 7 (2012) P09017]

In this talk: software compensation using predictions of electromagnetic fraction by DNN
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Motivation and goal

Machine-learning-based approach for software compensation

Software compensation (SC)

means event-by-event energy correction during reconstruction

Previous and ongoing studies:

parameterised local (hit-based) and global
(observables-based), up to 15% improvement in stochastic
term for single pions for both data and MC

Graph neural network trained on MC samples - considers
hadronic shower as image (work in progress by CALICE)

Simulated 80-GeV pion shower in
highly granular calorimeter

A novel approach proposed in this study

DNN training and optimisation on MC

inputs: global calorimetric observables

target: true electromagnetic fraction
fem =

∑
overπ0s Eπ0/Einitial

supervised learning

Inference (event-by-event)

calculation of calorimetric observables

prediction of fem from DNN trained

correction of event energy
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Simulations and preprocessing

Simulations, detector model and event selection

Simulations with Geant4 version 10.3

single negative pions @ 10–80 GeV, about 500 kevt / energy point
(raw samples centrally produced by CALICE DESY group)

model of highly granular analog hadron calorimeter AHCAL (scintillator-SiPM, steel absorber,
long. depth: ∼4.3 nucl. int. length, transverse size: 72×72 cm2)

Physics lists: FTFP BERT HP and QGSP BERT HP
HP (High Precision) – precise neutron models and cross sections below 20 MeV

Calibration and digitisation

MIP calibration with MC muons

light collection and photon detection by
SiPM, pixelisation and saturation are
emulated in digitisation

digitisation tuned with MC-to-Data
comparisons for muons and electrons

EM calibration factor,
Cem = 0.0233 GeV/MIP

Reconstruction chain and event selection

cell signals above 0.5 MIP threshold — hits

shower start finder algorithm tuned on MC
for analysis: only events with found
shower start at 3–6 AHCAL layers

conversion factor to hadron energy scale:
Chad = 1.2
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Simulations and preprocessing

Event energy reconstruction

Standard hadron energy reconstruction

E em
reco = Cem ·

Nhits∑
i=1

ei , E had
reco = Chad · E em

reco
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Energy reconstruction with correction from known electromagnetic fraction

Emeasured = ⟨em⟩ · Einitial · fem + ⟨h⟩ · Einitial · (1 − fem)

where ⟨em⟩ and ⟨h⟩ are mean reconstruction efficiencies for electromagnetic and hadronic subshowers
and are assumed to be energy independent: ⟨em⟩ = 1 for electromagnetic calibration and ⟨h⟩ can be
estimated empirically for particular calorimeter (⟨h⟩ ≈ 0.7–0.75 for AHCAL)

In MC, fem can be extracted as a sum of π0 energies in event, and one can correct for fem fluctuations:

E cor
reco =

E em
reco

fem + ⟨h⟩ · (1 − fem)
, where ⟨h⟩ accounts also for Chad

fem is not accessible in data but can be predicted by DNN from calorimetric observables!
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DNN model and training

Calorimetric observables for DNN input — 29 variables

Counting observables

Number of isolated hits, Niso [isolation – 0 neighbours in a cube of 3×3×3 cells around the hit]

Number of track hits, Ntrk [defined as having two in-line neighbours and MIP-like deposition]

Amplitude observables

Mean shower hit energy, ⟨ehit⟩

Shower radius Rsh =
∑Nsh

i=1 ei ·ri∑Nsh
i=1 ei

, ri =
√
(xi − x0)2 + (yi − y0)2 - hit rad. dist. from sh. axis (x0,y0)

Longitudinal shower centre of gravity ZCoG =
∑Nsh

i=1 ei ·(zi−zstart)∑Nsh
i=1 ei

,

ei - energy of hit with coordinates xi , yi , zi ; Nsh - number of shower hits
zi - hit longitudinal coordinate, zstart - longitudinal coordinate of shower start

Additional ”ring” observables (integrated over longitudinal depth)

3-cm wide rings around shower axis, consistent with cell transverse size; 12 rings in total

number of isolated hits in a ring, Nring
iso

energy fraction in a ring, f ringenr , w.r.t total energy sum
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DNN model and training

Deep Neural Network model, architecture and training

Target: electromagnetic fraction in event as a ratio of a sum of π0 energies to the initial energy

Regression model with MSE loss function

Li = (Y predicted
i − Y true

i )2 Loss = 1
N ·

N∑
i=1

Wi · Li
N - number of events for training
Wi – event weights from density-based weighting

Training, validation and test subsamples

mixed sample for 10-80 GeV

after selections: ∼130 kevt/ phys.list

train:valid:test ≈ 60%:20%:20%

Example DNN architecture and output

number of layers: 1 input, 6 hidden, 1 output

number of neurons: 29/80/40/20/16/32/64/1

activation function: ReLU = max(0, x) for hidden,
linear

(
f(y) = y

)
for output

bias neurons and weighted loss

number of training epochs: about 15

supervised learning

Tools: TensorFlow library, Keras framework, scikit-learn package
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Preliminary results

Example of corrected energy distributions for QGSP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to QGSP BERT HP
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Comparable improvement by true and predicted fem with ⟨h⟩ = 0.72 and ⟨h⟩ = 0.75.
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Preliminary results

Example of corrected energy distributions for FTFP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to FTFP BERT HP
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Comparable improvement by true and predicted fem with ⟨h⟩ = 0.72 and ⟨h⟩ = 0.75.
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Preliminary results

Energy correction using fem

DNN trained on mixed sample QGSP BERT HP and applied to QGSP BERT HP
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Better linearity and resolution with true fem. Significant improvement in rel. resol. with predicted fem.
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Preliminary results

Energy correction using true and predicted fem

DNN trained on mixed sample QGSP BERT HP and applied to FTFP BERT HP
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Better linearity and resolution with true fem. Significant improvement in rel. resol. with predicted fem.
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Summary

Summary

Prediction of em fraction in hadronic showers

tested on simulations with QGSP BERT HP and FTFP BERT HP physics lists from Geant4 v10.3

Technique: regression model in Deep Neural Network trained using supervised learning

Inputs: 29 calorimetric observables from a highly granular calorimeter

Target: electromagnetic fraction in a hadronic shower

Preliminary results for single pion-induced showers

DNN trained on mixed samples (10-80 GeV)
reasonable performance in event-by-event prediction of electromagnetic fraction

Application

predicted em fraction was used to correct energy event-by-event

comparable correction effects are achieved with true and predicted em fraction

Plans

optimise DNN hyperparameters to improve performance

apply trained model to data
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Example of corrected energy distributions for QGSP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to QGSP BERT HP
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Comparable improvement by true and predicted fem with ⟨h⟩ = 0.72 and ⟨h⟩ = 0.75.



Example of corrected energy distributions for QGSP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to QGSP BERT HP
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Example of corrected energy distributions for FTFP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to FTFP BERT HP
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Example of corrected energy distributions for FTFP BERT HP

DNN trained on mixed sample of QGSP BERT HP and applied to FTFP BERT HP
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Comparable improvement by true and predicted fem with ⟨h⟩ = 0.72 and ⟨h⟩ = 0.75.
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