Genetic Algorithm for determination of event collision time and particle identification by Time-Of-Flight at SPD NICA

Semyon Yurchenko

Saint Petersburg State University
6-th International Conference on Particle Physics and Astrophysics

December 1, 2022

The Spin Physics Detector

- Beams: $p \uparrow, d \uparrow$,
- $\sqrt{s} = 27 \, GeV$,
- Physics:
- Spin dependent physics
- Structure of proton
- Charmonia, Open charm, prompt-photons production
- Double spin asymmetries

Task and initial conditions

Using information about particles trajectories and hits from TOF detector determine time of *pp*-collision.

- In this work only tracks with the momentum above 500 MeV will be considered.
- 2 Resolution of the TOF detector $\sigma_t = 70 \ ps$.
- **3** Momentum resolution: $\frac{\sigma_p}{p} = 2\%$
- ◆ TOF radius is 1 m and length of 3.772 m.

Plan of simulation

- Get tracks of charged particles with momentum over 500 MeV from Pythia8 events with $\sqrt{s} = 27 \text{ GeV}$.
- 2 Calculate intersection point with TOF detector(t_i).
- **3** Calculate arc length of trajectory(L_i).
- Smear t_i with $N(t_i, 70 ps)$ and p_i with $N(p_i, 0.02 \cdot p_i)$.
- **1** Using information about arc lengths of trajectories, TOF hits and particle momentum determine time of pp-collision(t_0).

Plan of simulation

- **9** Get tracks of charged particles with momentum over 500 MeV from Pythia8 events with $\sqrt{s} = 27$ GeV.
- ② Calculate intersection point with TOF detector(t_i).
- **3** Calculate arc length of trajectory(L_i).
- Smear t_i with $N(t_i, 70 ps)$ and p_i with $N(p_i, 0.02 \cdot p_i)$.
- **1** Using information about arc lengths of trajectories, TOF hits and particle momentum determine time of pp-collision(t_0).

Brute force

Brute Force - checking all possible solutions.

① Choose particles types to make tof hypotheses $\rightarrow [\pi^{\pm}, K^{\pm}, p^{\pm}]$.

$$tof_{ik} = \frac{L_i}{c} \sqrt{1 + \frac{m_k^2}{p_i^2}} \tag{1}$$

- For every event check all tracks hypotheses combinations 3^N variants.
- **3** On every step calculate t_0 and χ^2 and find χ^2_{min} .

$$\chi^{2} = \sum_{i}^{N} \frac{(t_{0} + tof_{ik} - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad t_{0} = \frac{1}{\omega} \sum_{i}^{N} \frac{t_{i} - tof_{ik}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad \omega = \sum_{i}^{N} \frac{1}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}$$
(2)

1 Time complexity $O(N \cdot 3^N)$.

Brute force

Brute Force - checking all possible solutions.

① Choose particles types to make tof hypotheses $\rightarrow [\pi^{\pm}, K^{\pm}, p^{\pm}]$.

$$tof_{ik} = \frac{L_i}{c} \sqrt{1 + \frac{m_k^2}{p_i^2}} \tag{1}$$

- For every event check all tracks hypotheses combinations 3^N variants.
- **③** On every step calculate t_0 and χ^2 and find χ^2_{min} .

$$\chi^{2} = \sum_{i}^{N} \frac{(t_{0} + tof_{ik} - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad t_{0} = \frac{1}{\omega} \sum_{i}^{N} \frac{t_{i} - tof_{ik}}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}, \quad \omega = \sum_{i}^{N} \frac{1}{\sigma_{t}^{2} + \sigma_{p_{i}}^{2}}$$
(2)

• Time complexity $O(N \cdot 3^N)$ - very slow!!!

Genetic algorithm

How genetic algorithm works:

- **①** Associate masses of particles with indices: $[m_{\pi}, m_{K}, m_{p}] \rightarrow [0, 1, 2]$
- ② Create population of random candidate solutions $v([m_i]_k)$.
- Oreate mutant vector from random candidates in population(DE-inspired):

$$v_{mut} = v_r + (v_p - v_q) \tag{3}$$

- Check if $\chi^2_{mut} < \chi^2_r$ then replace v_r with v_{mut} . If not, population remains unchanged **Darwinian selection**.
- Repeat
- **①** After some number of steps stop and choose $\chi^2_{\it min}$ as an answer.
- Time complexity $O(N \cdot N_{population} \cdot N_{steps})$, 800 < N_{steps} < 1000.

Genetic algorithm: Example of iteration

Three candidate solutions and their χ^2 :

$$v_r = [2, 1, 1, 2, 0, 0], \chi^2 = 300$$

$$v_p = [1, 0, 0, 1, 0, 1], \chi^2 = 200$$

3
$$v_q = [0, 1, 2, 2, 1, 2], \chi^2 = 100$$

$$v_{mut} = v_r + (v_p - v_q) = [2, 0, 0, 1, 0, 0], \ \chi^2 = 10$$

 $\chi^2_{mut} < \chi^2_r$, so we change v_r in population for v_{mut} .

Genetic algorithm vs Brute force

Comparison of 2 algorithms was done on events with number of tracks $5 \le N \le 14$.

Brute Force's efficiency= $\frac{Events(-3\sigma,3\sigma)}{Event_{Normal}(-3\sigma,3\sigma)} \sim 98.6\%$. Genetic Algorithm's efficiency $\sim 97\%$

Genetic algorithm vs Brute Force

Differences:

- **1** Brute force gives solution with minimal χ^2 , but very slowly.
- 2 Genetic algorithm is nearly as accurate, but much faster.

Similarities

- Resolution of $t_0 \sim 29 \ ps$,
- ② Percentage of events where all tracks have been identified correctly $\sim 63.3\%$,
- **3** Overall percentage of tracks that were identified correctly \sim 96.8%.

Time complexity

Particle Identification

Some possible strategies:

- **1** Take particles types from χ^2 minimum(chi2_min),
- N-sigma criteria,
- Bayesian approach.

In 2 and 3 strategies we exclude particle from determination of t_0 to avoid correlations.

$$\sigma^2 = \sigma_{TOF}^2 + \sigma_p^2 + \sigma_{t_0}^2, \tag{4}$$

$n_{\sigma_k^i} = rac{\mathcal{S}_i - \hat{\mathcal{S}}_i(m_k)}{\sigma_k^i}$
If $n_{sigma} < 3$ for certain type,
we associate this type with particle $% \left(1\right) =\left(1\right) \left(1\right) \left($
ightarrowmore than 1 type
Only smearing is considered

N-sigma criteria

Bayesian approach

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=\pi,K,p}P(\vec{S}|H_k)C(H_k)}$$

$$P(S|H_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}n_{\sigma_i}^2\right)$$

Probability of being particle of certain type
Abundance of particles is also taken into account

Bayesian approach

Bayes formula:

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=\pi,K,p} P(\vec{S}|H_k)C(H_k)}$$
(5)

 $C(H_i)$ -prior probability, $P(H_i|\vec{S})$ - posterior probability, which is calculated iteratively. On first step $C(H_i)$ are chosen flat.

Detector signal:

$$P(S|H_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2}n_{\sigma_i}^2\right)$$
 (6)

In case of multiple signal (i.e dE/dx + TOF + Cherenkov):

$$P(S|H_i) = \prod_{k=dE/dx, TOF, Cherenkov} P(S|H_i)_k$$
 (7)

PID masses calculated with exclusion

Signals: $K_s \rightarrow \pi^+\pi^-$

Signals: $\phi \to K^+K^-$

Signals: $\Lambda \rightarrow p^+\pi^-$

Signals: $D^0 o \pi^+ K^-$ (and cc)

Summary

- \bullet Procedure for determination of t_0 has been developed.
- ② Genetic Algorithm efficiency \sim 97%,
- For Genetic Algorithm run time grows slowly as function of multiplicity. In events with high multiplicity it is algorithm of choice.
- **9** Both methods have resolution \sim 29 ps, which is much better than the TOF resolution(70 ps).
- **1** Obtained value of t_0 faciliates the particle identification at SPD.

Thank you for your attention!

Backup slides

Different hypotheses

Genetic3 hypotheses is $[\pi^{\pm}, K^{\pm}, p^{\pm}]$ Genetic4 hypotheses is $[e^{\pm}, \pi^{\pm}, K^{\pm}, p^{\pm}]$

TOFs

