

The 6nd international conference on particle physics and astrophysics *ICPPA - 2022 November 29 – December 2, 2022, Moscow*

Ionization loss simulation in gaps of fast neutron detector based on ¹⁰B layer and gaseous chamber

S.Potashev^{1,2}

¹Institute for Nuclear Research, RAS, Moscow ²Lebedev Physical Institute, RAS, Moscow

PSNDetector based on ¹⁰B and gas chamber

Position-sensitive neutron detector (PSND) Позиционночувствительный нейтронный детектор (ПЧНД)

PSNDs based on solid ¹⁰B or ¹⁰B₄C layers combined with gaseous chamber have recently been built. The detector is also suitable for detecting fast neutrons. It operates due to nuclear reactions: Недавно ПЧНД, основанный на твердом ¹⁰B или ¹⁰B₄C в комбинации с газовой камерой был построен. Он работает благодаря ядерным реакциям

 $n + {}^{10}B \rightarrow {}^{4}He + {}^{7}Li (a_0) and n + {}^{10}B \rightarrow {}^{4}He + {}^{7}Li + \gamma (a_1)$

Этот детектор также подходит для регистрации быстрых нейтронов. Potashev S., Drachev A., Burmistrov Yu. et al. // EPJ Web Conf. 2020. V. 231. P. 05010 Ionization loss of secondary nucleous directly depends on outgoing angle and fast (in MeV range) neutron energy. Therefore, neutron energy can be determined from these values. Ионизационные потери вторичного ядра непосредственно зависят от угла вылета и энергии нейтрона (в Мэв-ном диапазоне).

А. А. Каспаров, С. И. Поташев, А. А. Афонин, Ю. М. Бурмистров, А. И. Драчев. Известия РАН. Сер.физ., 2021, Т. 85, № 5, стр. 694-697

Charge particle, for example, ⁴He or ⁷Li nucleous can be identified and its energy is determined on ionization loss in successive gaseous gaps. Заряженная частица, например, ядро ⁴He или ⁷Li может идентифицировано и определена его энергия по ионизационным потерям в последовательных газовых зазорах. Lehraus I., Mattehewson R., Tejessy W. // NIMA. 1982. V. 196. P. 361-379 S Potashev et al // J. Phys.: Conf. Ser. 2019. V.1390 P.012120

Neutron detecting via nucleus loss in gaps

Neutron cross section and approximation

 E_{n} from 0,25 to 7 MeV, approximation $\sigma = \Sigma A_{i} \exp(-0.5 ((E - E_{c_{i}})/w_{i})^{2})$, i = from 1 to 6

R.Bevilacqua et al, EPJ Web of Conf. 2017 V.146, P.11010

Simulation for ionization loss at 1.8 MeV

 $E_n = 1.8$ MeV, only только $a_0(^4He+^7Li)$. Energy of ⁴He is not enough for $a_1(^4He+^7Li + \gamma)$ энергии ⁴He недостаточно для регистрации реакции $a_1(^4He+^7Li + \gamma)$

Simulation for ionization loss at 2.5 MeV

 $E_n = 2.5 \text{ MeV}, a_0 = {}^{4}\text{He} + {}^{7}\text{Li} \text{ and } a_1 = {}^{4}\text{He} + {}^{7}\text{Li} + \gamma$

Events belonging only to the a₀ nuclear reaction can be selected by applying the lower and upper thresholds in the 4th or / and other gap. События, относящиеся только к ядерной реакции a₀, можно отобрать, применяя нижний и верхний пороги в 4-ом и/или другом промежутке.

> Residual ionization energy loss sum in 3-d and 4-th gap. Сумма остаточных ионизационных потерь в 3-ем и 4-ом зазорах

Simulation for ionization loss at 3 MeV

 $E_n = 3 \text{ MeV}, a_0 = {}^{4}\text{He} + {}^{7}\text{Li} \text{ and } a_1 = {}^{4}\text{He} + {}^{7}\text{Li} + \gamma$

Events belonging only to the a_0 nuclear reaction can be selected by applying the lower and upper thresholds in the 3-d or / and 4th gap. Difference between a_0 and a_1 energy loss is due to γ -quant energy of 0.481 MeV. События, относящиеся только к ядерной реакции α_0 , можно отобрать, применяя нижний и верхний пороги в 3-ем и/или 4-ом зазоре. Разнјспт между потерями энергии α_0 и α_1 обусловлена энергией γ -квантов 0,481 МэВ.

Non-detected residual energy loss out of all gaps. Не детектируемые остаточные ионизационные потери вне всех зазоров

Simulation for ionization loss at 4 MeV

Neutron energy reconstruction

 $E_{\rm n} = 3 \, {\rm MeV}$

We can reconstruct energy of neutrons summing energy losses of ⁴He in four succesive detector gaps. Мы можем восстановить энергию нейтронов, суммируя потери ядра ⁴He в четырех последовательных зазорах детектора. If take the center of loss sum distribution gravity as the most probable value and correspond it to given energy we get energy linear calibration. Если принять центр тяжести распределения суммы потерь как наиболее вероятную величину и поставить ее в соответствие с данной энергией, то получаем линейную калибровку по энергии.

Here, errors on below plot are full widths on half of maximum (FWHM) of distributions.

Conclusions

- Energy loss simulation in gaps of fast neutron detector was performed. Выполнено моделирование энергетических потерь в зазорах детектора быстрых нейтронов.
- Energy loss increases and spectrum spreads versus index of gap. Потери возрастают и спектр расширяется с увеличением номера зазора.
- Events belonging only to the α₀ nuclear reaction can be selected by applying the lower and upper thresholds in the 4th or / and other detector gap. События, относящиеся только к ядерной реакции α₀, можно отобрать, применяя нижний и верхний пороги для сигнала от 4-ого и/или другого зазора детектора.

Experiment: neutron spectrum E_n (max) = 3.3 MeV

 E_{n} (max) = 4.2 MeV