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The four-dimensional superstring corrections to Einstein gravity can be
presented such as Gauss-Bonnet term ξ(ϕ)G 1. At present inflationary
scenarios in Einstein-Gauss-Bonnet gravity are rather popular 2

1J. c. Hwang and H. Noh, Phys. Rev. D 61, 043511 (2000),[astro-ph/9909480]; C.
G. Callan, D. Friedan, E. J. Martinec and M. J. Perry, Nucl. Phys. B 262 593 (1985);
B. Zwiebach, Phys. Lett.B 156, 315 (1985); S. Deser and A. N. Redlich, Phys. Lett.B
176, 350 (1986); D. J. Gross and J. H. Sloan, Nucl. Phys. B 291, 41 (1987)

2S. Nojiri, S. D. Odintsov, V. K. Oikonomou and A. Constantini, Nucl. Phys. B
985, 116011 (2022), [2210.16383 [gr-qc]]; Z. K. Guo and D. J. Schwarz,Phys. Rev. D
81, 123520 (2010) [1001.1897 [hep-th]].; C. van de Bruck and C. Longden, Phys. Rev.
D 93, no.6, 063519 (2016), [1512.04768 [hep-ph]]; K. El Bourakadi,
M. Ferricha-Alami, H. Filali, Z. Sakhi and M. Bennai, Eur. Phys. J. C 81, no.12, 1144
(2021),[2209.08581 [gr-qc]]; H. A. Khan and Yogesh, Phys. Rev. D 105, no.6, 063526
(2022), [2201.06439 [astro-ph.CO]]; E. O. Pozdeeva, Eur. Phys. J. C 80, no.7, 612
(2020), [2005.10133 [gr-qc]];E. O. Pozdeeva and S. Y. Vernov, Eur. Phys. J. C 81,
no.7, 633 (2021), [2104.04995 [gr-qc]];
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We modify the Starobinsky inflation model by adding the
Bel-Robinson tensor Tµνλρ squared term proposed as the leading
quantum correction inspired by superstring theory.

The (R + 1
6m2R

2 − β
8m6T

2) model under consideration has two
parameters: the inflaton mass m and the string-inspired positive
parameter β.

We derive the equations of motion in the
Friedmann-Lemaitre-Robertson-Walker universe and investigate its
solutions.

We find the physical bounds on the value of the parameter β by
demanding the absence of ghosts and consistency of the derived
inflationary observables with the measurements of the cosmic
microwave background radiation.
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The Starobinsky model of inflation 3 is described by the modified
gravity action

SStar.[gµν ] =
M2

Pl

2

∫
d4x

√
−g

(
R +

1

6m2
R2

)
(1)

MPl = 1/
√
8πGN -reduced Planck mass, m-inflaton (scalaron) mass.

This model has an attractor-type solution describing a quasi-de
Sitter expansion of the universe with the slow-roll inflation.

Being proposed the long time ago, the Starobinsky inflationary
model is in perfect agreement with the recent measurements of the
cosmic microwave background (CMB) radiation 4

The only free parameter m is fixed by CMB measurements (COBE
normalization) as

m = 1.3

(
55

N

)
10−5MPl = 3.2

(
55

N

)
1013 GeV, (2)

N is the number of e-foldings describing the duration of inflation.
3A.A. Starobinsky, Phys. Lett. B 91 (1980) 99
4Planck collaboration, Astron. Astrophys.641 (2020) A10 [1807.06211]; BICEP,

Keck collaboration, Phys.Rev. Lett. 127 (2021) 151301 [2110.00483]; M. Tristram et
al., Phys. Rev. D 105 (2022) 083524 [2112.07961]

4 / 23



The Bel-Robinson (BR) tensor in 4D

We consider the gravity action

SSBR[gµν ] =
M2

Pl

2

∫
d4x

√
−g

[
R +

1

6m2
R2 − β

8m6
TµνλρTµνλρ

]
,

(3)
where we have introduced dimensionless coupling constant β > 0
and the Bel-Robinson (BR) tensor in four spacetime dimensions.

The Bel-Robinson (BR) tensor in four spacetime dimensions 5

Tµνλρ ≡ RµαβλRν
αβ

ρ + ∗Rµαβλ ∗Rν
αβ

ρ

= RµαβλRν
αβ

ρ + RµαβρRν
αβ

λ − 1

2
gµνRαβγλRαβγ

ρ ,(4)

We define dual tensors with the help of Levi-Civita tensors, e.g.,

∗Rµνλρ =
1

2
EµναβR

αβ
λρ , Eµνλρ =

√
−g ϵµνλρ , (5)

where ϵµνλρ is the constant Levi-Civita symbol.
5L. Bel, Colloq. Int. CNRS 91 (1962) 119.; I. Robinson, Bull. Acad. Pol. Sci. Ser.

Sci. Math. Astron. Phys. 7 (1959) 351.; S. Deser, Iberian Gravity Symposium, 1,
1999 [gr-qc/9901007]
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Euler density and Gauss-Bonnet-term

The BR tensor squared can be rewritten in terms of the Euler and
Pontryagin densities squared by using the identities 6

TµνλρTµνλρ =
1

4

(
P2
4 − E 2

4

)
=

1

4
(P4 + E4) (P4 − E4) , (6)

where the Euler and Pontryagin (topological) densities have been
introduced in D = 4 dimensions as

E4 =
∗Rµνλρ

∗Rµνλρ and P4 =
∗RµνλρR

µνλρ , (7)

The Euler density coincides with the Gauss-Bonnet (GB) term
E4 = G.

6S. Deser,[gr-qc/9901007]
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Therefore, we can rewrite the SBR action (3) to the form

SSBR[gµν ] =
M2

Pl

2

∫
d4x

√
−g

[
R +

1

6m2
R2 +

β

32m6

(
G2 − P2

4

)]
, (8)

thus establishing a connection to the modified f (R,G) gravity theories. 7

In particular, the positive sign of β is consistent with the physical
requirement in the F (G) modified theories of gravity, demanding the
second derivative of the F -function to be positive 8

7To the best of our knowledge, the P4-terms were never considered in the modified
gravity literature.

8A. De Felice and S. Tsujikawa, Construction of cosmologically viable f(G) dark
energy models, Phys. Lett. B 675 (2009) 1 [0810.5712].
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The linearization of the SBR action

The classical actions (3) and (8) can also be rewritten to the following
form:

SSBR[gµν , ϕ, χ, ξ] =
M2

Pl

2
SR − M2

Plβ

32m6
(SG + SP) , (9)

where we have introduced the auxiliary scalar fields ϕ, χ and ξ, together
with

SR [gµν , ϕ] =

∫
d4x

√
−g

[
R

(
1 +

ϕ

3m2

)
− ϕ2

6m2

]
, (10)

SG [gµν , χ] =

∫
d4x

√
−g

(
χ2

2
− Gχ

)
, (11)

SP [gµν , ξ] =

∫
d4x

√
−g

(
ξP4 −

ξ2

2

)
. (12)

Varying the action (9) with respect to the scalar fields, we get the
equations

χ = G, ϕ = R, ξ = P4 , (13)

while their substitution into Eq. (9) yields back the action (8).
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Friedman-Lemaitre-Robertson-Walker (FLRW) universe

• We apply the SBR theory to inflation in a flat
Friedman-Lemaitre-Robertson-Walker (FLRW) universe

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)
, (14)

t is the cosmic time, a(t) is a scale factor.
• We find that the P4 term in the SBR action does not contribute to the
equations of motion in the FLRW case.
• Then the equations of motion in the SBR theory are given by

(
Rρν − gρν

2
R
)(

1 +
ϕ

3m2

)
+

ϕ2

12m2
gρν−

1

3m2

(
∇ρ∇ν +∇ν∇ρ

2
− gρν□

)
ϕ

+
β

64m6

[
χ2gρν + 8 {(Rgρν − 2Rρν)□χ− R∇ρ∇νχ

+ 2(Rα
ν ∇α∇ρχ+ Rα

ρ ∇α∇νχ)− 2(gρνRαβ + Rαρνβ)∇β∇αχ
}]

= 0,

χ = G, ϕ = R .
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The (0, 0)-component of the equations of motion in the FLRW universe
reads

3H2

(
1 +

R

3m2

)
− R2

12m2
+

HṘ

m2
=

β

64m6

[
G2 − 48H3Ġ

]
. (15)

We rewrite Eq. (15) in terms of the Hubble function H(t) and its time
derivatives as

2
(
m4 + 3βH4

)
HḦ −

(
m4 − 9βH4

)
Ḣ2 (16)

+ 6
(
m4 + 3βH4

)
H2Ḣ − 3βH8 +m6H2 = 0
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Slow-roll solution with β = 0
In the case β = 0 we can be written in terms of the Hubble function
H(t) as the non-linear ODE of the 2nd order (dubbed the Starobinsky
equation)

2HḦ −
(
Ḣ
)2

+ H2
(
6Ḣ +m2

)
= 0 , (17)

In the slow-roll approximation defined by the conditions∣∣∣Ḧ∣∣∣≪ ∣∣∣HḢ
∣∣∣ and

∣∣∣Ḣ∣∣∣≪ H2 , (18)

Eq. (17) is greatly simplified to

6Ḣ +m2 ≈ 0 , (19)

and has the well-known solution

H(t) ≈ m2

6
(t0 − t) , (20)

where t0 is the integration constant that apparently corresponds to the
end of inflation, so that this leading term in H(t) > 0 should be a good
approximation for t ≪ t0.
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Taking into account the slow-roll conditions allows us to simplify
Eq. (16) to the non-linear ordinary differential equation

6
(
m4 + 3βH4

)
Ḣ − 3βH6 +m6 = 0 . (21)

When searching for a perturbative solution to this equation in the first
order with respect to β, we find a simple answer,

H(t) ≈ m2(t0 − t)

6
− β

(m
6

)6
(t0 − t)5

[
m2

14
(t0 − t)2 +

18

5

]
. (22)

The first derivative of the Hubble function (22) with respect to time reads

Ḣ = − m2

6
+

βm6 (t − t0)
4
[
(t − t0)

2 m2 + 36
]

27 · 36
. (23)
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Physical bounds on the value of β

• Cano, Fransen and Hertog 9 studied various scenarios of inflation in the
neighborhood of the Starobinsky model modified by the higher-order
curvature terms, depending upon the unknown effective function F (H2)
entering the equations of motion in the FLRW universe.
• Though our modification of the Starobinsky model in Eq. (8) is outside
their modified (higher-derivative) gravity theories because Eq. (16)
includes Ḧ.
• We can apply their results in the slow-roll approximation under the
conditions (18) after the identification of the parameters as αl2 = 2/m2,
where α is the dimensionless coupling constant 10 and l = (α′)1/2 is the
fundamental length in superstring theory.

9P.A. Cano, K. Fransen and T. Hertog, Phys. Rev. D 103 (2021) 103531
[2011.13933].

10P.A. Cano, K. Fransen and T. Hertog, Phys. Rev. D 103 (2021) 103531
[2011.13933].
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The slow-roll conditions (18) allows to simplify Eq. (15)

R

(
R

12
− H2

)
− HṘ = 3m2

(
H2 − 3β H8

m6
+

18β H6Ḣ

m6

)
. (24)

Equation (15) can be put to the form

R

(
R

12
− H2

)
− HṘ = 3m2

(
H2 − 3β

m4
H6 − 3β

m6
H8

)
≡ 3m2F (H2) ,

(25)
so that the effective F (H2) function 11 in our case is given by

F (H2) = H2 − 3β

m4

(
H2
)3 − 3β

m6

(
H2
)4

. (26)

Accordingly, we have

F ′(H2) = 1− 9β

(
H

m

)4

− 12β

(
H

m

)6

(27)

where the primes here denote the differentiations with respect to H2.
11P.A. Cano, K. Fransen and T. Hertog, Phys. Rev. D 103 (2021) 103531

[2011.13933].
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The effective Newton constant in the higher-derivative gravities 12 must
obey the condition (in the notation adapted to the F -function 13

Geff. =
1

8πM2
Pl [F

′(H2) + 4(H2/m2)]
> 0 (28)

in order to avoid graviton ghosts. Given the F -function (26), we find the
restriction

β < 6.941 · 10−4 . (29)

12P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Phys. Rev. D 95 (2017) 044010
[1610.08519].

13P.A. Cano, K. Fransen and T. Hertog, Phys. Rev. D 103 (2021) 103531
[2011.13933].
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Inflationary parameters

We apply early obtained 14 formulas for inflationary parameters:

ns = 1− 2

N
− 8λ3m

4 N

27
+

λ4m
6 N2

6
(30)

r =
12

N2
− 16λ3 m

4

9
+

2λ4 Nm
6

3
(31)

where λ3, λ4 are coefficients before corresponding power of the Hubble
parameter in right part of the following equation:

R

(
R

12
− H2

)
− HṘ = 3m2

(
λ4 H

8 − λ3 H
6 + H2

)
(32)

14P.A. Cano, K. Fransen and T. Hertog, Phys. Rev. D 103 (2021) 103531
[2011.13933].
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Yet another upper bound on β can be obtained from CMB
measurements. The results of P.A. Cano, K. Fransen and T. Hertog,
Phys. Rev. D 103 (2021) 103531 [2011.13933] for the observable CMB
tilts, specified to our case, are given by

ns = 1− 2

N
− 8βN

9
− βN2

2
(33)

and

r =
12

N2
− 16

3
β − 2βN , (34)

for scalar and tensor perturbations, respectively.
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According to the CMB observation data 15 , we have

ns = 0.9649± 0.0042, r < 0.036 , (35)

for the tilt ns of scalar (curvature) perturbations and the
tensor-to-scalar ratio r .

For example,
(i) to get ns = 0.9691 with N = 65, we need β = 4.608 · 10−8,
(ii) to get ns = 0.9607 with N = 55, we need β = 1.857 · 10−6, and
(iii) to get ns = 0.9607 with N = 65, we need β = 3.9 · 10−6.

Therefore, in order to be consistent with the observed value of the
spectral index ns for all 55 < N < 65, we should demand

β ⩽ 3.9 · 10−6 . (36)

The tensor-to-scalar-ratio r is under the upper bound of Eq. (35) for
these values of β.

15Planck collaboration, Astron. Astrophys.641 (2020) A10 [1807.06211]; BICEP,
Keck collaboration, Phys.Rev. Lett. 127 (2021) 151301 [2110.00483]; M. Tristram et
al., Phys. Rev. D 105 (2022) 083524 [2112.07961]
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We summarize our findings in Figures 1 and 2.

Figure: The spectral index ns for 0 ⩽ β ⩽ 3.9 · 10−6 with the e-foldings
55 ⩽ N ⩽ 65. The dotted lines are the boundaries for the observed value of ns
set by the CMB data.
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Figure: The tensor-to-scalar ratio r for 0 ⩽ β ⩽ 3.9 · 10−6 with the e-folding
number 55 ⩽ N ⩽ 65.
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In order to calculate the β-correction to the observable (CMB) amplitude
As of scalar perturbations, we take the slow-roll parameter ϵ in terms of
the function H2(N),

ϵ =
1

2

d lnH2

dN
=

1

2N
+

β N

3

(
N

8
+

1

3

)
, (37)

As =
(1 + ζ/9)h2

16π2 ϵ

m2

M2
Pl

=

(
N2

24π2
+

N5β

864π2

)
m2

M2
Pl

, (38)

where we have introduced the new parameter ζ as

ζ = − 9 (4 ϵ+ ns − 1)

8 ϵ
≈ β N2 (3N + 4)

4
. (39)

The first term of As is standard and has the value Ās = 2.1 · 10−9 for the
best fit N = 55.
Substituting m = 1.3( 55N )10−5MPl into As gives the β-correction and

As ≈ 2.1 · 10−9 + 5.5 · 10−11N3β . (40)

For instance, when N = 65 and β = 10−6, we get the β-correction of the
order O(10−3)Ās .
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• We studied physical applications of the Bel-Robinson tensor Tµνλρ

squared term, proposed as the leading quantum correction inspired by
superstring theory, to the inflationary stage of the early universe
evolution. The proposed gravitational EFT action includes squares of
two topological densities E4 = G and P4. The P2

4 term does not
contribute to the evolution equations in a spatially flat FLRW universe,
so that the action reduces to the particular case of the F (R,G) modified
gravity on the FLRW background.
• Since we extended the Starobinsky inflation model by the new
parameter β, the predictions for CMB observables are modified. We
obtained the leading corrections in the first order with respect to β and
the physical bounds of the parameter β.
• The next generation of CMB experiments e.g., the satellite missions
LiteBIRD and CORE, as well as the ground-based experiments
POLARBEAR, BICEP/Keck and Simons Observatory, will measure the
values of the cosmological tilts and the CMB amplitude with higher
precision, which may also probe quantum corrections to the Starobinsky
inflation.
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Thank you for attention
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