Spectrum of quantum BTZ black hole formed by a collapsing dust shell

Artem Starodubtsev, Alexander Andrianov ${ }^{1}$ and Danila Lyozin

Faculty of Physics
Saint Petersburg State University

November 30, 2022

[^0]
Introduction

- Solutions to classical General Relativity contain singularities in which the theory looses predictability.
- Can quantum theory resolve these singularities?

Quantization of a collapsing dust shell in $3+1$ dimensions

V.Berezin (1990's-2000's)

Spherically symmetric metrics $d s^{2}=-g_{00} d t^{2}+g_{01} d r d t+g_{11} d r^{2}+R^{2} d \Omega^{2}$
Phase space reduction within ADM formalism $g_{i j}(x), \pi^{i j}(x) \rightarrow P_{R}, R, m \neq M_{\text {bare }},(T ?)$

Hamiltonian constraint

$$
C=\left(1-\frac{2 m G}{R}\right)+1-2 \sqrt{1-\frac{2 m G}{R}} \cosh \left(\frac{G P_{R}}{R}\right)-\frac{M_{\text {bare }}^{2} G^{2}}{R^{2}}
$$

Define the wavefunction on the entire Penrose diagram:

Quantization of a collapsing dust shell in $3+1$ dimensions (continued)

Wavefunction is an analytic function defined on a two-fold Riemann surface, as $\sqrt{1-\frac{2 m G}{R}}$ is not single-valued.
Define the bypassing rules for the branching point $R=2 m G$

- WDW equation is not a differential equation but an equation in finite differences. A first hint on discreteness

Stationary Solutions

$$
\Psi\left(m, R^{2}+i \zeta\right)+\Psi\left(m, R^{2}-i \zeta\right)=\frac{\left(1-\frac{2 m G}{R}\right)+1-\frac{M_{b a r e}^{2} G^{2}}{R^{2}}}{\sqrt{1-\frac{2 m G}{R}}} \Psi\left(m, R^{2}\right),
$$

where $\zeta=m_{P I}^{2} /\left(2 m^{2}\right)$

$$
\rightarrow \text { mass spectrum }
$$

.but there is a parametrization of the entire phase space of the model by real variables. spectrum of radius \rightarrow dynamics

BTZ Black Hole

- The BTZ black hole, Bañados, Teitelboim, Zanelli 1992, in "Schwarzschild" coordinates is described by the metric

$$
\begin{equation*}
d s^{2}=-(N)^{2} d t^{2}+N^{-2} d r^{2}+R^{2} d \phi \tag{1}
\end{equation*}
$$

with lapse function

$$
\begin{equation*}
N=\left(1-2 m+\frac{R^{2}}{\ell^{2}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

(From now on we use units in which Newton's constant $G=1$) The parameters m is the ADM mass, which is related to the mass M in original BTZ conventions as $M=2 m-1$.

- The metric 1 satisfies the ordinary vacuum field equations of ($2+1$)-dimensional general relativity with a cosmological constant $\Lambda=-1 / \ell^{2}$.
- BTZ black holes are locally isometric to anti-de Sitter space $A D S^{2}$.

Action principle

- The basic variable is $\mathrm{SO}(2,2)$-connection $A_{\mu}^{A B}$, where $A, B=0 . .3$. Here $A_{\mu}^{3 a}=e_{\mu}^{a} / I$ is the triad, where $I=1 / \sqrt{\Lambda}$, and $A_{\mu}^{a b}=\omega_{\mu}^{a b}$ is the Lorentzian connection, where $a, b=0 . .2$.
- The total action consists of gravity action in the Chern-Simons form and the shell action

$$
\begin{equation*}
S=\frac{1}{8 \pi} \int_{M} d^{3} x \epsilon^{\mu \nu \rho}\left\langle A_{\mu},\left(\partial_{\nu} A_{\rho}+\frac{2}{3} A_{\nu} A_{\rho}\right)\right\rangle+S_{\text {shell }} \tag{3}
\end{equation*}
$$

where $A_{\mu}=\Gamma_{A B} A_{\mu}^{A B}$ is so $(2,2)$ connection, and \langle,$\rangle is a bilinear form$ on so(2,2) algebra, the Newton constant G is taken to be 1 .

- The shell is discretized (represented as an ensemble of N particles)

$$
\begin{equation*}
S_{\text {shell }}=\sum_{i}^{N} \int_{l_{i}} \operatorname{Tr}\left(K_{i} A_{\mu}\right) d x^{\mu} \tag{4}
\end{equation*}
$$

where I_{i} is i-th particle worldline and $K_{i}=m_{i} \Gamma_{03}$ - a fixed element of so(2,2)-algebra, M_{i} is the mass of i-th particle.

Phase space reduction

- Cut spacetime into N regions (discs) each containing one particle and an outer region (polygon), containing no particles (Alekseev, Malkin)

- Apply the results of 't Hooft, Matschull, Welling for each particle: solve the constraints, plug the solution back into the action. The symplectic form collapses to the vertices of the polygon:

$$
\begin{equation*}
\Omega_{i}=d\left\langle e^{-K_{i}}\left(\delta g_{i} g_{i}^{-1}\right) e^{K_{i}} \wedge \delta g_{i} g_{i}^{-1}\right\rangle \tag{5}
\end{equation*}
$$

- For cylindrically symmetric arrangement of the particles, the sum of the symplectic form for each particle is combined into a single form

$$
\begin{equation*}
\Omega_{\text {full }}=\left\langle\delta g_{0} g_{0}^{-1}, \wedge U^{-1} \delta U\right\rangle, \quad \underline{U}=\prod g_{i}^{-1} e^{K_{i}} g_{i} \tag{6}
\end{equation*}
$$

Momentum space

- The Lorenzian part of holonomy U provides a global chart for the entire momentum space. It is a rotation outside the horizon and a boost inside. Its geometry is $A D S^{2}$.

Figure: ADS-momentum space
 and its four regions. (p_{-1}, p_{0}, p_{1} are coordinates of three dimensional flat space in which $A D S^{2}$ is embedded)

Figure: Corresponding four regions on the Penrose diagram

- It satisfies the constraint $\operatorname{Tr} U=\cos (\sqrt{1-2 m})$, where m is the total mass. This is the Hamiltonian constraint

so(2,2)-algebra as a classical Drinfeld double.

- Lorentz transformations generated by $J^{a}=\epsilon^{a b c} \Gamma_{a b}$, translations by $P_{a}=\Gamma_{a 3},\left[J^{a}, J^{b}\right]=\epsilon^{a b c} J_{c},\left[P^{a}, P^{b}\right]=\Lambda \epsilon^{a b c} J_{c}$. Translations do not form a subalgebra
- Choose a basis $x_{0}=2 i J_{1}, x_{1}=-J_{0}+i J_{2}, x_{2}=J_{0}+i J_{2}$ $X_{0}=\frac{1}{2} i P_{1}, X_{1}=\frac{1}{2}\left(P_{0}+i P_{2}\right)+\frac{\Lambda}{2} x_{2}, X_{1}=\frac{1}{2}\left(-P_{0}+i P_{2}\right)-\frac{\Lambda}{2} x_{1}$, with possible exchange $J_{1}, P_{1} \rightleftarrows J_{0}, P_{0}$.
- Now Lorentz transformations form s/(2) subalgebra : $\left[x_{0}, x_{1}\right]=2 x_{1}$, $\left[x_{0}, x_{2}\right]=-2 x_{2},\left[x_{1}, x_{2}\right]=x_{0}$ Modified translations also form a subalgebra $\left[X_{0}, X_{1}\right]=\frac{\Lambda}{2} X_{1}$, $\left[X_{0}, X_{2}\right]=-\frac{\Lambda}{2} X_{2},\left[X_{1}, X_{2}\right]=0$, which is a sum of two Borel subalgebras of $s /(2), B^{+} \oplus B^{-}$with diagonal elements identified.
- Cross commutation relations between new translations and Lorentz transformations leave Ad-invariant the following bilinear form

$$
\begin{equation*}
\left\langle x_{a}, X^{b}\right\rangle=\delta_{a}^{b},\left\langle x_{a}, x^{b}\right\rangle=0,\left\langle X_{a}, X^{b}\right\rangle=0 \tag{7}
\end{equation*}
$$

- This algebra is classical Drinfeld double $D(s /(2))$

so(2,2)-algebra as a classical Drinfeld double.

- This can be promoted to a Lie bialgebra with cocommuta+าr given by

$$
\begin{equation*}
\delta_{D}(Y)=[Y \otimes 1+1 \otimes Y, r], \forall Y \in\left\{x_{a}, X_{a}\right\}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\sum_{a} X_{a} \otimes x^{a} \tag{9}
\end{equation*}
$$

is the classical r-matrix. It automatiacally satisfies classical
Yang-Baxter equation. cocommutator depends on its skew symmetric part,

$$
\begin{equation*}
r^{\prime}=\sum_{a} X_{a} \wedge x^{a} \tag{10}
\end{equation*}
$$

In terms of the initial generators, J_{a}, P^{a} it can be rewritten as

$$
\begin{equation*}
r^{\prime}=\underbrace{(\wedge) J_{0} \wedge J_{2}}_{\text {skew sym. part of sl(2) }}+\underbrace{-P_{0} \wedge J_{0}+P_{1} \wedge J_{1}+P_{2} \wedge J_{2}}_{\text {survives in } \wedge \rightarrow 0 \text { limit }} \tag{11}
\end{equation*}
$$

Poisson-Lie structure on the phase space and classical DD.

- On the phase space of the shell a symplectic form has been derived

$$
\begin{equation*}
\Omega_{\text {shell }}=\left\langle\delta h_{0} h_{0}^{-1}, \wedge U^{-1} \delta U\right\rangle=\left\langle e^{K} \delta h_{0} h_{0}^{-1} e^{-K}, \wedge \delta h_{0} h_{0}^{-1}\right\rangle \tag{12}
\end{equation*}
$$

where h_{0} is $S O(2,2)$ transformation between a point on the shell and the origin, K is a Lorentz generator which leaves singularity worldline stable, and $U=h_{0} e^{K} h_{0}^{-1}$ - the holonomy around the shell.

- Decompose $h_{0}=h_{L} h_{T}$, where $h_{L}=\exp \left(\alpha_{a} x^{a}\right)$ - Lorentz transform and $h_{T}=\exp \left(\beta_{a} X^{a}\right)$-modified translation which is a subgroup. then

$$
\Omega_{\text {shell }}=\left\langle\delta h_{T} h_{T}^{-1}, \wedge U_{L}^{-1} \delta U_{L}\right\rangle=\left\langle\delta h_{T} h_{T}^{-1}, \wedge h_{L}^{-1} e^{-K} \delta h_{L} h_{L}^{-1} e^{K} h_{L}\right\rangle
$$

Poisson brackets

$$
\begin{equation*}
\left\{h_{T}, \otimes U_{L}\right\}=\left(1 \otimes U_{L}\right) r\left(h_{T} \otimes 1\right) \tag{13}
\end{equation*}
$$

with r-matrix from the previous slide.

- The infenitesimal version of this Poisson-Lie group is $D(s /(2))$ Lie bialgebra, and its quantization results in quantum double $D\left(S L_{q}(2)\right)$.

Quantum double: coordinate and momentum space are both non-linear and non-commutative.

- Deformation of the algebra of observables with $q=\exp (-\pi \sqrt{|\Lambda|} \hbar)$ or $q=\exp (i \pi \sqrt{|\Lambda|} \hbar)$.
- Quantum double $D\left(S L_{q}(2)\right)$ is a unity of quantum universal enveloping algebra, $U_{q}(s /(2))$, and its dual, quantized algebra of functions on a group, $\operatorname{Fun}\left(S L_{q}(2)\right)$, with commutation relations between the two.
- Coordinate space is the algebra of deformed translations in $A D S^{3}$ space: $U_{q}(s l(2)): X_{ \pm}, H$,

$$
\begin{equation*}
q^{H / 2} X_{ \pm} q^{-H / 2}=q^{ \pm 1} X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}} \tag{14}
\end{equation*}
$$

Casimir: $C_{2}=X^{+} X^{-}+\left(\frac{q^{\frac{1}{2}(H-1)}-q^{-\frac{1}{2}(H-1)}}{q-q^{-1}}\right)^{2}$

Quantum double (continued).

- Momentum space is an $S L_{q}(2)$ holonomy around the shell

$$
U=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- Non-commutative algebra $\operatorname{Fun}\left(S L_{q}(2)\right): a, b, c, d, a d-q b c=1$

$$
\begin{gathered}
a b=q b a, \quad a c=q c a, \quad b d=q d b, \quad c d=q d c \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c
\end{gathered}
$$

- Cross commutation relations between $U_{q}(s /(2))$ and $\operatorname{Fun}\left(S L_{q}(2)\right)$ $(a \leftrightarrow c, b \leftrightarrow d)$

$$
q^{H} a=q^{-1} a q^{H}, \quad q^{H} b=q b q^{H}, \quad X_{-} a=q^{1 / 2} a X_{-}, \quad X_{+} b=q^{-1 / 2} b X_{+}
$$

$$
X_{+} a=q^{1 / 2} a X_{+}+q^{-1 / 2} b q^{H / 2}, \quad X_{-} b=q^{-1 / 2} b X_{-}+q^{1 / 2} a q^{H / 2}
$$

Worldline of the singularity and *-relations

- so(2,2): Lorentz generators $J_{0}=-J_{0}^{*}, J_{1,2}=J_{1,2}^{*}$, and translation generators $P_{0}=-P_{0}^{*}, P_{1,2}=P_{1,2}^{*}$.
- Depending on the total energy the shell collapses either to point particle with trajectory along P_{0}, or to BTZ black hole along P_{1}.
- Point particle: timelike singularity

$$
\begin{equation*}
\Omega_{\text {shell }}=\left\langle e^{i J_{0}} \delta h_{0} h_{0}^{-1} e^{-i J_{0}}, \wedge \delta h_{0} h_{0}^{-1}\right\rangle \tag{15}
\end{equation*}
$$

$D\left(S U_{q}(1,1)\right)$-case, $H=i P_{0}, q$-real

$$
a^{*}=d, \quad b^{*}=q c, \quad H^{*}=H, \quad X_{ \pm}^{*}=-X_{\mp}, \quad q^{*}=q
$$

- Black hole: spacelike singularity

$$
\begin{equation*}
\Omega_{\text {shell }}=\left\langle e^{i J_{1}} \delta h_{0} h_{0}^{-1} e^{-i J_{1}}, \wedge \delta h_{0} h_{0}^{-1}\right\rangle \tag{16}
\end{equation*}
$$

$D\left(S L_{q}(2)\right)$-case, $H=i P_{1}, q$-root of unity

$$
a^{*}=a, \quad b^{*}=b, \quad H^{*}=-H, \quad X_{ \pm}^{*}=-X_{ \pm}, \quad q^{*}=q^{-1}
$$

Momentum representation

- The states are ordered polynomials acting on $\mathbf{1}$

$$
\begin{equation*}
\Psi=\sum \alpha_{k l m n} a^{k} b^{\prime} c^{m} d^{n} \mathbf{1} \tag{17}
\end{equation*}
$$

If $k, l, m, n \geq 0$ these states are not normalizible (as it could be seen in $q \rightarrow 1$ limit). These states correspond to finite dimensional non-unitary representations of $s /(2)$.
Normalizible state need to contain negative degrees of combinations of a, b, c, d which are invertible.

- In $S U_{q}(1,1)$ case $a a *=a d=1+b b * \geq 1$, so a is invertible and the same for d.
- The lowest weight states are

$$
\begin{equation*}
\Psi_{n, n}=a^{-n} \mathbf{1}, \quad \Psi_{n,-n}=d^{-n} \mathbf{1} \tag{18}
\end{equation*}
$$

The rest is obtained by applying $X_{ \pm}$to them. The time operator $T=H$ has discrete, but unbounded spectrum, $T \Psi_{n, n}=n \Psi_{n, n}$. The structure of representations is the same as in $q=1$ limit. But this is a no black hole case

Coordinate operators and their spectra

- In $S L_{q}(2)$ case the invertible combination is
$\tilde{a}=q^{1 / 2} a-i b+i c+q_{\tilde{H}}^{-1 / 2} d, \quad \tilde{a}^{*} \tilde{a}=q+q^{-1}+a^{2}+b^{2}+c^{2}+d^{2}>1$
- $\tilde{a} 1$ is an eigenstate of $\tilde{H}=i\left(q^{-1 / 2} X_{+} q^{-H / 2}-q^{+1 / 2} X_{-} q^{-H / 2}\right)$, $\tilde{H} a ̃ 1=\tilde{a} 1$. By $q \rightarrow 1$-correspondence this is time operator $T=\tilde{H}$, it is hermitian $T^{*}=T$.
- The lowest weight normalizible states are:

$$
\begin{aligned}
& \Psi_{I, I}=\prod_{k=1}^{l}\left(q^{k}\left(q^{1 / 2} a+i c\right)+\left(-i b+q^{-1 / 2} d\right)\right)^{-1} \mathbf{1} \\
& \Psi_{I,-I}=\prod_{k=1}^{l}\left(q^{k}\left(q^{-1 / 2} a-i c\right)+\left(i b+q^{1 / 2} d\right)\right)^{-1} \mathbf{1}
\end{aligned}
$$

- The eigenvalues of time operator

$$
T \Psi_{l, \pm I}=\frac{q^{ \pm I}-q^{\mp I}}{q-q^{-1}} \Psi_{l, \pm I}=[\pm l]_{q} \Psi_{l, \pm I}
$$

Unlike $S U_{q}(1,1)$, the eigenvalues of time operator are now q-integersac

Coordinate operators and their spectra (continued)

- Other states can be derived without explicit construction of $X_{ \pm}$

$$
\begin{aligned}
& \Psi_{I-n, I+n}=\Psi_{I, I} \prod_{k=0}^{n-1}\left(-q^{-I-k}\left(q^{1 / 2} a+i c\right)+\left(-i b+q^{-1 / 2} d\right)\right) \mathbf{1} \\
& \Psi_{I-n,-I-n}=\Psi_{I,-I} \prod_{k=0}^{n-1}\left(-q^{-I-k}\left(q^{-1 / 2} a-i c\right)+\left(i b+q^{1 / 2} d\right)\right) \mathbf{1}
\end{aligned}
$$ here $0 \leq n<I$.

- Eigenstates of T and C_{2} :

$$
\begin{gather*}
T \Psi_{I, n}=[n]_{q} \Psi_{I, n}, \tag{19}\\
C_{2} \Psi_{I, n}=\left(\left(q^{\frac{1}{2}(I-1)}-q^{-\frac{1}{2}(I-1)}\right) /\left(q-q^{-1}\right)\right)^{2} \Psi_{I, n} \\
I=0 \ldots N, \quad n=-N . .-I, I . . N, \quad N=1 /(\sqrt{|\Lambda|} \hbar) \quad q^{N}=-1 \tag{20}
\end{gather*}
$$

Inside the $\mathrm{BH} n$ and $/$ vary within a finite range, \rightarrow Hilbert space is finite-dimensional

Coordinate operators and their spectra (pictures)

- The shell radius in terms of Casimir $R=\sqrt{2 m\left(C_{2}-\frac{1}{n}\right)}$

Corsimin eigenvalue's

Time
Dimensionulitity of representation

Quantization (dynamics)

- The quantum version of the Hamiltonian constraint is a finite difference equation

$$
\begin{equation*}
\psi(t-1, \tilde{b} \tilde{c})+\psi(t+1, \tilde{b} \tilde{c})=H(\tilde{b} \tilde{c}) \psi(t, \tilde{b} \tilde{c}) \tag{21}
\end{equation*}
$$

where This is Klein-Gordon-like equation for discrete time.

- Its Schroedinger version is $\psi(t+1, \tilde{b} \tilde{c})=\mathbf{U}(\tilde{b} \tilde{c}) \psi(t, \tilde{b} \tilde{c})$, where $\mathbf{U}=H+\sqrt{H-1}-$ evolution operator.

$$
\begin{equation*}
H=\frac{\cos (\pi Q)}{1+\tilde{b} \tilde{c}}, \quad b=M \frac{\sinh \bar{\chi} \sin (\pi Q)}{\pi Q}, \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\sqrt{\left(1-M \sqrt{\cosh ^{2}(\bar{\chi})}\right)^{2}-(M \sinh (\bar{\chi}))^{2}} \tag{23}
\end{equation*}
$$

and $\bar{\chi}$ is a parameter to be excluded.

- U is bounded, Ψ exponentially decrease at large momenta. Matrix elements of U must be everywhere finite

Near horizon transitions $q \rightarrow 1$

The transition amplitude from outside the horizon to inside the horizon, I \rightarrow II, and back, II \rightarrow I, in one step in time is calculated numerically.

Figure: II \rightarrow I (curve B) vs. I \rightarrow II (curve A) relative transition rate.
II \rightarrow I transition rate is non-zero, but exponentially damped away from the horizon.

Conclusions

- The Hilbert space of the shell inside the black hole is finite-dimensional, the spectrum of the shell radius is discrete and bounded
- One can argue that transition amplitudes between different shell radii, including $R=0$ singularity are everywhere finite
- The shell bounces off the singularity

$$
s l 2
$$

1) Hegrim lapt. Konerro Jepr

$$
\begin{array}{rl}
n=-l \cdot l & 11|111111| 11 \\
-l
\end{array}
$$

2) yrumapn. © feprul.

$$
\begin{aligned}
& -\widehat{\| \| 1\| \|}
\end{aligned}
$$

[^0]: ${ }^{1}$ This research was funded by the RSF, Grant No. 21-12-00020

