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Introduction

Solutions to classical General Relativity contain singularities in which
the theory looses predictability.

Can quantum theory resolve these singularities?
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Quantization of a collapsing dust shell in 3+1 dimensions

V.Berezin (1990’s-2000’s)
. Spherically symmetric metrics
ds2 = −g00dt

2 + g01drdt + g11dr
2 + R2dΩ2

. Phase space reduction within ADM formalism
gij(x), πij(x)→ PR ,R,m 6= Mbare , (T?)

. Hamiltonian constraint

C =
(

1− 2mG

R

)
+ 1− 2

√
1− 2mG

R
cosh

(GPR

R

)
−

M2
bareG

2

R2

. Define the wavefunction on the entire Penrose diagram:
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Quantization of a collapsing dust shell in 3+1 dimensions
(continued)

. Wavefunction is an analytic function defined on a two-fold Riemann

surface, as
√

1− 2mG
R is not single–valued.

. Define the bypassing rules for the branching point R = 2mG

. WDW equation is not a differential equation but an equation in finite
differences. A first hint on discreteness

Ψ(m,R2 + iζ) + Ψ(m,R2 − iζ) =

(
1− 2mG

R

)
+ 1− M2

bareG
2

R2√
1− 2mG

R

Ψ(m,R2),

where ζ = m2
Pl/(2m2)

. .....but there is a parametrization of the entire phase space of the model
by real variables.
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BTZ Black Hole

The BTZ black hole, Bañados, Teitelboim, Zanelli 1992, in
”Schwarzschild” coordinates is described by the metric

ds2 = −(N)2dt2 + N−2dr2 + R2dφ, (1)

with lapse function

N =
(

1− 2m +
R2

`2

)1/2
. (2)

(From now on we use units in which Newton’s constant G = 1) The
parameters m is the ADM mass, which is related to the mass M in
original BTZ conventions as M = 2m − 1.

The metric 1 satisfies the ordinary vacuum field equations of
(2+1)-dimensional general relativity with a cosmological constant
Λ = −1/`2.

BTZ black holes are locally isometric to anti-de Sitter space ADS2.
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Action principle

The basic variable is SO(2,2)-connection AAB
µ , where A,B = 0..3.

Here A3a
µ = eaµ/l is the triad, where l = 1/

√
Λ, and Aab

µ = ωab
µ is the

Lorentzian connection, where a, b = 0..2.

The total action consists of gravity action in the Chern-Simons form
and the shell action

S =
l

8π

∫
M
d3xεµνρ〈Aµ, (∂νAρ +

2

3
AνAρ)〉+ Sshell , (3)

where Aµ = ΓABA
AB
µ is so(2,2) connection, and 〈, 〉 is a bilinear form

on so(2,2) algebra, the Newton constant G is taken to be 1.

The shell is discretized (represented as an ensemble of N particles)

Sshell =
N∑
i

∫
li

Tr(KiAµ)dxµ, (4)

where li is i-th particle worldline and Ki = miΓ03 – a fixed element of
so(2,2)-algebra, Mi is the mass of i-th particle.
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Phase space reduction

Cut spacetime into N regions (discs) each containing one particle and
an outer region (polygon), containing no particles (Alekseev, Malkin)

Apply the results of ’t Hooft, Matschull, Welling for each particle:
solve the constraints, plug the solution back into the action. The
symplectic form collapses to the vertices of the polygon:

Ωi = d〈e−Ki (δgig
−1
i )eKi ∧ δgig−1

i 〉. (5)

For cylindrically symmetric arrangement of the particles, the sum of
the symplectic form for each particle is combined into a single form

Ωfull = 〈δg0g
−1
0 ,∧U−1δU〉, U =

∏
i

g−1
i eKigi (6)
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Momentum space

The Lorenzian part of holonomy U provides a global chart for the
entire momentum space. It is a rotation outside the horizon and a
boost inside. Its geometry is ADS2.

Figure: ADS-momentum space
and its four regions. (p−1, p0, p1

are coordinates of three
dimensional flat space in which
ADS2 is embedded)

Figure: Corresponding four regions on
the Penrose diagram

It satisfies the constraint TrU = cos(
√

1− 2m), where m is the total
mass. This is the Hamiltonian constraint
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so(2,2)-algebra as a classical Drinfeld double.

Lorentz transformations generated by Ja = εabcΓab, translations by
Pa = Γa3,[Ja, Jb] = εabcJc , [Pa,Pb] = ΛεabcJc . Translations do not
form a subalgebra

Choose a basis x0 = 2iJ1, x1 = −J0 + iJ2, x2 = J0 + iJ2

X0 = 1
2 iP1, X1 = 1

2 (P0 + iP2) + Λ
2 x2, X1 = 1

2 (−P0 + iP2)− Λ
2 x1, with

possible exchange J1,P1 � J0,P0.

Now Lorentz transformations form sl(2) subalgebra : [x0, x1] = 2x1,
[x0, x2] = −2x2, [x1, x2] = x0

Modified translations also form a subalgebra [X0,X1] = Λ
2X1,

[X0,X2] = −Λ
2X2, [X1,X2] = 0, which is a sum of two Borel

subalgebras of sl(2), B+ ⊕ B− with diagonal elements identified.

Cross commutation relations between new translations and Lorentz
transformations leave Ad-invariant the following bilinear form

〈xa,X b〉 = δba , 〈xa, xb〉 = 0, 〈Xa,X
b〉 = 0 (7)

This algebra is classical Drinfeld double D(sl(2))
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so(2,2)-algebra as a classical Drinfeld double.

This can be promoted to a Lie bialgebra with cocommutator given by

δD(Y ) = [Y ⊗ 1 + 1⊗ Y , r ], ∀Y ∈ {xa,Xa}, (8)

where
r =

∑
a

Xa ⊗ xa (9)

is the classical r-matrix. It automatiacally satisfies classical
Yang-Baxter equation. cocommutator depends on its skew symmetric
part,

r ′ =
∑
a

Xa ∧ xa (10)

In terms of the initial generators, Ja, Pa it can be rewritten as

r ′ = (Λ)J0 ∧ J2︸ ︷︷ ︸
skew sym. part of sl(2) r−matrix

+−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2︸ ︷︷ ︸
survives in Λ→0 limit

(11)
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Poisson-Lie structure on the phase space and classical DD.

On the phase space of the shell a symplectic form has been derived

Ωshell = 〈δh0h
−1
0 ,∧U−1δU〉 = 〈eKδh0h

−1
0 e−K ,∧δh0h

−1
0 〉 (12)

where h0 is SO(2, 2) transformation between a point on the shell and
the origin, K is a Lorentz generator which leaves singularity worldline
stable, and U = h0e

Kh−1
0 - the holonomy around the shell.

Decompose h0 = hLhT , where hL = exp(αax
a) - Lorentz transform

and hT = exp(βaX
a) -modified translation which is a subgroup.

then

Ωshell = 〈δhTh−1
T ,∧U−1

L δUL〉 = 〈δhTh−1
T ,∧h−1

L e−KδhLh
−1
L eKhL〉

Poisson brackets

{hT ,⊗UL} = (1⊗ UL)r(hT ⊗ 1), (13)

with r-matrix from the previous slide.
The infenitesimal version of this Poisson-Lie group is D(sl(2)) Lie
bialgebra, and its quantization results in quantum double D(SLq(2)).
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Quantum double: coordinate and momentum space are
both non-linear and non-commutative.

Deformation of the algebra of observables with q = exp(−π
√
|Λ|~) or

q = exp(iπ
√
|Λ|~).

Quantum double D(SLq(2)) is a unity of quantum universal
enveloping algebra, Uq(sl(2)), and its dual, quantized algebra of
functions on a group, Fun(SLq(2)), with commutation relations
between the two.

Coordinate space is the algebra of deformed translations in ADS3

space: Uq(sl(2)): X±,H,

qH/2X±q
−H/2 = q±1X±, [X+,X−] =

qH − q−H

q − q−1
(14)

Casimir: C2 = X+X− +

(
q

1
2 (H−1)−q−

1
2 (H−1)

q−q−1

)2
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Quantum double (continued).

Momentum space is an SLq(2) holonomy around the shell

U =

(
a b
c d

)
Non-commutative algebra Fun(SLq(2)): a, b, c, d , ad − qbc = 1

ab = qba, ac = qca, bd = qdb, cd = qdc

bc = cb, ad − da = (q − q−1)bc

Cross commutation relations between Uq(sl(2)) and Fun(SLq(2))
(a↔ c ,b ↔ d)

qHa = q−1aqH , qHb = qbqH , X−a = q1/2aX−, X+b = q−1/2bX+

X+a = q1/2aX+ + q−1/2bqH/2, X−b = q−1/2bX− + q1/2aqH/2
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Worldline of the singularity and *-relations

so(2, 2): Lorentz generators J0 = −J∗0 , J1,2 = J∗1,2, and translation
generators P0 = −P∗0 , P1,2 = P∗1,2.

Depending on the total energy the shell collapses either to point
particle with trajectory along P0, or to BTZ black hole along P1.

Point particle: timelike singularity

Ωshell = 〈e iJ0δh0h
−1
0 e−iJ0 ,∧δh0h

−1
0 〉 (15)

D(SUq(1, 1))-case, H = iP0, q-real

a∗ = d , b∗ = qc , H∗ = H, X ∗± = −X∓, q∗ = q

Black hole: spacelike singularity

Ωshell = 〈e iJ1δh0h
−1
0 e−iJ1 ,∧δh0h

−1
0 〉 (16)

D(SLq(2))-case, H = iP1,q-root of unity

a∗ = a, b∗ = b, H∗ = −H, X ∗± = −X±, q∗ = q−1
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Momentum representation

The states are ordered polynomials acting on 1

Ψ =
∑

αklmna
kblcmdn1 (17)

If k , l ,m, n ≥ 0 these states are not normalizible (as it could be seen
in q → 1 limit). These states correspond to finite dimensional
non-unitary representations of sl(2).
Normalizible state need to contain negative degrees of combinations
of a, b, c , d which are invertible.
In SUq(1, 1) case aa∗ = ad = 1 + bb∗ ≥ 1, so a is invertible and the
same for d .
The lowest weight states are

Ψn,n = a−n1, Ψn,−n = d−n1 (18)

The rest is obtained by applying X± to them. The time operator
T = H has discrete, but unbounded spectrum, TΨn,n = nΨn,n. The
structure of representations is the same as in q = 1 limit. But this is
a no black hole case
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Coordinate operators and their spectra

In SLq(2) case the invertible combination is
ã = q1/2a− ib + ic + q−1/2d , ã∗ã = q + q−1 + a2 + b2 + c2 + d2 > 1
ã1 is an eigenstate of H̃ = i(q−1/2X+q

−H/2 − q+1/2X−q
−H/2),

H̃ã1 = ã1. By q → 1-correspondence this is time operator T = H̃, it
is hermitian T ∗ = T .
The lowest weight normalizible states are:

Ψl ,l =
l∏

k=1

(
qk(q1/2a + ic) + (−ib + q−1/2d)

)−1
1

Ψl ,−l =
l∏

k=1

(
qk(q−1/2a− ic) + (ib + q1/2d)

)−1
1

The eigenvalues of time operator

TΨl ,±l =
q±l − q∓l

q − q−1
Ψl ,±l = [±l ]qΨl ,±l

Unlike SUq(1, 1), the eigenvalues of time operator are now q-integers.
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Coordinate operators and their spectra (continued)

Other states can be derived without explicit construction of X±

Ψl−n,l+n = Ψl ,l

n−1∏
k=0

(
− q−l−k(q1/2a + ic) + (−ib + q−1/2d)

)
1

Ψl−n,−l−n = Ψl ,−l

n−1∏
k=0

(
− q−l−k(q−1/2a− ic) + (ib + q1/2d)

)
1

here 0 ≤ n < l .
Eigenstates of T and C2:

TΨl ,n = [n]qΨl ,n, (19)

C2Ψl ,n = ((q
1
2

(l−1) − q−
1
2

(l−1))/(q − q−1))2Ψl ,n

l = 0...N, n = −N..− l , l ..N, N = 1/(
√
|Λ|~) qN = −1 (20)

Inside the BH n and l vary within a finite range, → Hilbert space is
finite-dimensional
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Coordinate operators and their spectra (pictures)
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Quantization (dynamics)

The quantum version of the Hamiltonian constraint is a finite
difference equation

ψ(t − 1, b̃c̃) + ψ(t + 1, b̃c̃) = H(b̃c̃)ψ(t, b̃c̃), (21)

where This is Klein-Gordon-like equation for discrete time.

Its Schroedinger version is ψ(t + 1, b̃c̃) = U(b̃c̃)ψ(t, b̃c̃), where
U = H +

√
H − 1 – evolution operator.

H =
cos(πQ)

1 + b̃c̃
, b = M

sinh χ̄ sin(πQ)

πQ
, (22)

where

Q =

√(
1−M

√
cosh2(χ̄)

)2
−
(
M sinh(χ̄)

)2
. (23)

and χ̄ is a parameter to be excluded.

U is bounded, Ψ exponentially decrease at large momenta. Matrix
elements of U must be everywhere finite
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Near horizon transitions q → 1

The transition amplitude from outside the horizon to inside the horizon, I
→ II, and back, II → I, in one step in time is calculated numerically.

Figure: II → I (curve B) vs. I → II (curve A) relative transition rate.

II → I transition rate is non-zero, but exponentially damped away from the
horizon.
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Conclusions

The Hilbert space of the shell inside the black hole is
finite-dimensional, the spectrum of the shell radius is discrete and
bounded

One can argue that transition amplitudes between different shell radii,
including R = 0 singularity are everywhere finite

The shell bounces off the singularity
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