Observation of a new effect in the ternary fission of ²⁵²Cf(sf) with the emission of an alpha particle.

A.O. Strekalovsky¹, D. V. Kamanin¹, Yu. V. Pyakov^{2,1}, Z. I. Goryainova¹, E. A. Kuznetsova¹, A. N. Solodov¹, O. V. Strekalovsky^{3,2}, V. E. Zhuchko², A. O. Zhukova¹

¹ Joint Institute for Nuclear Research, Dubna, Russia;

² National Nuclear Research University "MEPHI", Moscow, Russia;

³ Dubna State University, Dubna, Russia;

Introduction

Particle accompanied ²⁵²Cf fission (conventional ternary fission or equatorial emission)

Polar diagram of alpha-particle energy versus the emission angle with respect to the light fission fragment, for ²⁵²Cf.

Tsien San-Tsiang et al.; P hys.Rev.71(1947), 128

	ternary particle	<e> [MeV]</e>	FWHM [MeV]	Yield Particle/ Bin.fission
	³ Н	8.2±0.6	7.2±0.6	3.1E-04
	⁴ He	16.4±0.2	10.3±0.3	2.7E-03
	⁵ He	12.4±0.3	8.9±0.5	5.6E-04
	⁶ He	12.6±0.5	8.9±0.5	7.2E-05
	⁷ He	11.0±1.5	8±2	1.5E-05
	⁸ He	10.2±1.0	10.2±1.0	8.1E-06
	Li	14.3±1.0	14.3±1.0	1.9E-05
	Ве	17.5±1.0	18±1	5.6E-05
	В	21.2 ±1.0	19.3±1.0	4.4E-06
	С	26 ±1	-	3.1E-04
	Sum			3.73E-03

https://web-docs.gsi.de/~wolle/FISSION/ternary/node2.html Relative emission probabilities of the various ternary particles and first and second moments of the energy distribution for the spontanous fission of ²⁵²Cf.

Particle accompanied ²⁵²Cf fission experiments

Angular range	Method (detectors)	Reference		
Equatorial	TOF-E (MCP-silicon)	Mutterer et al. (2008)		
Full	dE-E (silicon-silicon)	Wagemans et al. (2004)		
Full	dE-E (gas-silicon)	Kopatch et al. (2002)		
Full	TOF-E (silicon ball)	Tishchenko et al. (2002)		
Equatorial	dE-E (gas-silicon)	Grachev et al. (1988)		
Full	Ey (Gammasphere)	Ter-Akopian et al. (2004)		

Berlin Silicon Ball internal radius ~ 10 cm

But! **None** of these setups made it possible **to measure** the Time-of-Flight and Energy of **each fragment** in **multiparticle** events independently.

Experiment and results

COrrelation M-E-T Array 2021 (COMETA) setup - different approach → new data

In each **ternary** event: $M_1 > M_2 > M_3$

Fig.5 (the redone fig.1) dM = 252-(M1+M2) vs M3 distribution, all M₃ are in mosaic_2 & Energy-filter for M3: >7MeV.

Fig.6 Projection to dM = 252-(M1+M2) axis. M1 and M2 are measured independently.

Discussion and conclusion

ternary particle	<e> [MeV]</e>	FWHM [MeV]	Yield Particle/ Bin.fission		
³ Н	8.2±0.6	7.2±0.6	3.1E-04		
⁴ He	16.4±0.2	10.3±0.3	2.7E-03	<-	only "part of
⁵He	12.4 ±0.3	8.9±0.5	5.6E-04		the truth"
⁶ He	12.6±0.5	8.9±0.5	7.2E-05		
⁷ He	11.0±1.5	8±2	1.5E-05		
⁸ He	10.2±1.0	10.2±1.0	8.1E-06		
Li	14.3±1.0	14.3±1.0	1.9E-05		
Be	17.5±1.0	18±1	5.6E-05		
В	21.2±1.0	19.3±1.0	4.4E-06		
С	26 ±1	-	3.1E-04		
Sum			3.73E-03		

- Ternary LCP Yields <u></u>

- Quaternary ⁴He Yield is \approx 2.0E-06 Particle/Bin.fission

[V.G.Tishenko_thesis_2002]

Fig.8 The figure is given to demonstrate the distribution of masses between the decay products.

Fig.9 An analogy with known Collinear Cluster Tri-partition (CCT) process can be used to explain the experimental results. CCT: break-up of the FF while its passing through the foil.

Fig.10 Hypothetical scenario:

For the first time the missing mass is experimentally observed in triple coincidences with the emission of an alpha particle. This observation may indicate that at least some part of the α -accompanied ternary fission events are realized according to the following scenario:

1. Preformation of a di-nuclear system in the scission point consisting of the LCP in the range of ⁸Be-¹⁶O and much heavier core-nucleus;

2. At scission the LCP can emit the α -particle in the direction perpendicular to the fission axis;

3. The rest of the LCP does not fuse with the core-nucleus and this system breaks-up when passing through the foil.

Thank you for your attention!

Mass spectrum of 252Cf fission fragments obtained by the method described above. Black denotes the reference mass spectrum from [3].

$$(FF)$$

$$(He)$$

$$(FF)$$

$$(He)$$

$$(FF)$$

На 4пи системах типа силиконБола:

Для 2E — очень тонкие источники, но вопрос порога и разрешения, т.к. 4я частица может иметь очень маленькую E (от Оля) **M-miss In each TERNARY event**