Nuclear mass table based on Bayesian estimation of binding energy difference expressions

<u>K. A. Stopani</u>, V. V. Negregetsky, M. V. Simonov, T. Yu. Tretyakova, E. V. Vladimirova

Moscow State University (Skobeltsyn Institute of Nuclear Physics, Faculty of Physics)

ICPPA-2022, 30/XI/2022

< □ > < □ > < □ > < Ξ > < Ξ > Ξ > ○ Q ^O 1/ 16

Local mass relations

Introduction

Nuclear mass tables based on local mass relations are solutions of partial difference equations $\hat{O}^n W(N, Z) = \tau(N, Z)$. Example: transverse Garvey–Kelson mass equation (homogeneous PDE)

$$Z = \frac{-+}{++-} \approx 0 \quad M(N+2, Z-2) - M(N, Z) + M(N+1, Z) - M(N+2, Z-1) + M(N, Z-1) - M(N+1, Z-2) \approx 0$$

This work as continuation of [Vladimirova et al., AIP Conf. 2377, 070003 (2021)] uses the residual *pn*-interaction energy

$$Z \wedge = B_d(N, Z) = B_d(N, Z) - B_n(N, Z - 1) - B_p(N - 1, Z),$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 2/16

which determines an inhomogenous PDE.

Behaviour of $\Delta_{np}(A)$ for medium and heavy nuclei

As a function of the mass number Δ_{np} separates into 2 branches for odd and even A and shows little dependence on shell effects or pairing.

Estimation of $\Delta_{np}(A)$ using the Bayes theorem

$$P_{\text{post}}(\theta|x) = rac{L(x|\theta)P_{\text{prior}}(\theta)}{P(x)}$$

 $\begin{array}{l} P_{\text{posterior}}(\theta|x) - \text{posterior} \\ \text{distribution of } \theta, \ x - \text{observed data}, \\ L(x|\theta) - \text{likelihood function}, \\ P_{\text{prior}}(\theta) - \text{prior distribution of } \theta, \\ P(x) - \text{marginal distribution}. \end{array}$

"Prior knowledge" + "data" \rightarrow "posterior knowledge" Treat experimental Δ_{np}^{\exp} at each point as random values with normal distribution $\Delta_{np}(A) \sim N(\mu_A, \sigma_A^2)$.

$$\ln L(\{\Delta_{np}^{\exp}\}|\{\mu\},\{\sigma^2\}) = \sum_{A=A_{\min}}^{A_{\max}} \sum_{\substack{\Delta_{np,i}^{\exp}\\p_{p,i}}} \ln N(\Delta_{np,i}^{\exp}|\mu_A,\sigma_A^2)$$
for this A

Regularization condition

- Smoothness of Δ_{np}(A) results from Tikhonov's regularization condition on μ(A) and σ(A) and can be interpreted as prior knowledge.
- Originally, Tikhonov's regularization was formulated for the least squares method: $\chi^2_{\text{reg}} = \chi^2 + \tau ||\theta||^2$, where τ is the regularization parameter. Penalty on high amplitude of θ .
- Expressed as prior distribution: $\ln P_{\text{prior}}(\theta) = -\tau ||\theta||^2 = -\tau (\sum \mu_A^2 + \sum \sigma_A^2).$
- Derivative: In $P_{\text{prior}}(\theta) = -\tau (\sum (\mu_{A+1} \mu_A)^2 + \sum (\sigma_{A+1} \sigma_A)^2).$
- 2nd derivative: $\ln P_{\text{prior}}(\theta) = -\tau (\sum (2\mu_{A+1} - \mu_A - \mu_{A+2})^2 + \sum (2\sigma_{A+1} - \sigma_A - \sigma_{A+2})^2).$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 < 0 / 16</p>

MCMC method

Bayesian estimates of $\{\mu\}$ and $\{\sigma\}$ are obtained by sampling from the posterior distribution with the MH algorithm of random walk:

- 1. Randomly generate new $\{\mu, \sigma^2\}_{t+1}$.
- 2. Calculate $\alpha = \frac{L(\{\Delta_{np}^{exp}\}|\{\mu,\sigma^2\}_{t+1})P_{prior}(\{\mu,\sigma^2\}_{t+1})}{L(\{\Delta_{np}^{exp}\}|\{\mu,\sigma^2\}_t)P_{prior}(\{\mu,\sigma^2\}_t)}.$
- 3. Accept $\{\mu, \sigma^2\}_{t+1}$ with probability α , otherwise accept $\{\mu, \sigma^2\}_t$. 4. Go to step 1.

Choice of regularization parameters

For each $\tau_{odd,even}$: use AME2016 to predict masses of 65 new nuclei in AME2020, calculate RMS error of prediction. Best In $\tau_{odd} = 7$, In $\tau_{even} = 19$.

Model	RMS Err [keV]
MCMC	361.9
No MCMC (LMR)	376.5
FRMD2016	909.2
HFB-17	729.6
DZ10*	815.2
DZ10GP*	289.1
* No ⁴⁶ Mn, ⁵⁰ Co, ⁷³ Rb, ²¹¹ Pa in	
DZ10(GP).	

<ロト < □ > < □ > < 三 > < 三 > 三 の < ☉ 7/16

Obtained estimates of Δ_{np}

Comparison of predicted binding energies

୬୯୯ 9/16

Comparison of predicted binding energies

Stability of prediction

Reduce number of nuclei in AME2016 layer-by-layer, calculate RMS error.

◆□ → ◆母 → ◆ = → ◆ = → ○ へ ⁽²⁾ 11/16

Comparison of predicted neutron thresholds

▶ ▲□ ▶ ▲ 콜 ▶ ▲ 콜 ▶ ▲ 콜 · 키익 ↔ 12/16

Comparison of predicted neutron thresholds

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のへで 13/16

Comparison of predicted proton thresholds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 14/16

Conclusions

- Nuclear mass model based on Bayesian estimation of Δ_{np} is described.
- Very simple Monte-Carlo computation method: no numeric minimization, root finding, etc.
- Obtained RMS error value of 0.36 MeV is an improvement in comparison to the older version.
- Error scales quadratically with number of steps.
- $\Delta_{np}(A)$ shows preference for non-smooth behaviour for odd-A nuclei.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank you!

◆□ → ◆母 → ◆ 星 → ◆ 星 → ○ ○ ○ 16/ 16