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Local mass relations
Introduction

Nuclear mass tables based on local mass relations are solutions of partial
difference equations ÔnW (N,Z ) = τ(N,Z ). Example: transverse
Garvey–Kelson mass equation (homogeneous PDE)

M(N + 2,Z − 2)−M(N,Z ) +M(N + 1,Z )−
−M(N + 2,Z − 1) +M(N,Z − 1)−M(N + 1,Z − 2) ≈ 0

This work as continuation of [Vladimirova et al., AIP Conf. 2377, 070003
(2021)] uses the residual pn-interaction energy

∆np(N,Z ) = Bd(N,Z )− Bn(N,Z − 1)− Bp(N − 1,Z ),

which determines an inhomogenous PDE.
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Behaviour of ∆np(A) for medium and heavy nuclei

(Data from AME2020)

As a function of the mass number ∆np separates into 2 branches for odd
and even A and shows little dependence on shell effects or pairing.
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Estimation of ∆np(A) using the Bayes theorem

Ppost(θ|x) =
L(x |θ)Pprior(θ)

P(x)

Pposterior(θ|x) — posterior
distribution of θ, x — observed data,
L(x |θ) — likelihood function,
Pprior(θ) — prior distribution of θ,
P(x) — marginal distribution.

“Prior knowledge” + “data” → “posterior knowledge”

Treat experimental ∆exp
np at each point as random values with normal

distribution ∆np(A) ∼ N(µA, σ
2
A).

ln L({∆exp
np }|{µ}, {σ2}) =

Amax∑
A=Amin

∑
∆exp

np,i

for this A

lnN(∆exp
np,i |µA, σ

2
A)
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Regularization condition

▶ Smoothness of ∆np(A) results from Tikhonov’s regularization
condition on µ(A) and σ(A) and can be interpreted as prior
knowledge.

▶ Originally, Tikhonov’s regularization was formulated for the least
squares method: χ2

reg = χ2 + τ ||θ||2, where τ is the regularization
parameter. Penalty on high amplitude of θ.

▶ Expressed as prior distribution:
lnPprior(θ) = −τ ||θ||2 = −τ(

∑
µ2
A +

∑
σ2
A).

▶ Derivative: lnPprior(θ) = −τ(
∑

(µA+1 − µA)
2 +

∑
(σA+1 − σA)

2).
▶ 2nd derivative:

lnPprior(θ) = −τ(
∑

(2µA+1−µA−µA+2)
2+

∑
(2σA+1−σA−σA+2)

2).
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MCMC method
Bayesian estimates of {µ} and {σ} are obtained by sampling from the
posterior distribution with the MH algorithm of random walk:

1. Randomly generate new {µ, σ2}t+1.

2. Calculate α =
L({∆exp

np }|{µ,σ2}t+1)Pprior({µ,σ2}t+1)

L({∆exp
np }|{µ,σ2}t)Pprior({µ,σ2}t)

.

3. Accept {µ, σ2}t+1 with probability α, otherwise accept {µ, σ2}t .
4. Go to step 1.



7/ 16

Choice of regularization parameters
For each τodd,even: use AME2016 to
predict masses of 65 new nuclei in
AME2020, calculate RMS error of
prediction. Best ln τodd = 7,
ln τeven = 19.

Model RMS Err [keV]
MCMC 361.9

No MCMC (LMR) 376.5
FRMD2016 909.2

HFB-17 729.6
DZ10∗ 815.2

DZ10GP∗ 289.1
∗ No 46Mn, 50Co, 73Rb, 211Pa in
DZ10(GP).
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Obtained estimates of ∆np
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Comparison of predicted binding energies
Use ∆np estimates to extrapolate AME2016
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Comparison of predicted binding energies
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Stability of prediction

Reduce number of nuclei in AME2016 layer-by-layer, calculate RMS error.
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Comparison of predicted neutron thresholds
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Comparison of predicted neutron thresholds
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Comparison of predicted proton thresholds
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Conclusions

▶ Nuclear mass model based on Bayesian estimation of ∆np is
described.

▶ Very simple Monte-Carlo computation method: no numeric
minimization, root finding, etc.

▶ Obtained RMS error value of 0.36 MeV is an improvement in
comparison to the older version.

▶ Error scales quadratically with number of steps.
▶ ∆np(A) shows preference for non-smooth behaviour for odd-A nuclei.
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Thank you!


