iDREAM detector at Kalinin NPP: antineutrino signal, backgrounds

E. Litvinovich^{1,2} for the iDREAM team

¹National Research Centre "Kurchatov Institute", Russia ²National Research Nuclear University "MEPhI", Russia

December 01, 2022

6th International Conference on Particle Physics and Astrophysics

Motivation

>Antineutrinos first detected 60+ years ago

Idea to utilize neutrinos as a tool for nuclear reactor monitoring expressed 40+ years ago. Isotopic evolution of a nuclear reactor leads to:

changes in antineutrino flux

Changes in antineutrino spectrum

- Many proof-of-principle studies performed since then, starting with ROVNO neutrino detectors 30+ years ago
- NOW time for <u>quantitative study</u> of neutrino reactor monitoring method, including the context of nuclear safeguards

ROVNO antineutrino detector

ROVNO counting room

iDREAM basics

≻Initial idea:

- Build neutrino detector for applied physics based on proven technologies, in order to provide easy manufacturing and maintenance
- Implement the <u>complementary</u>, non-intrusive, neutrino-based tool for the monitoring of the reactor state and the estimation of the accumulated fissile elements for non-proliferation treaties
- Gain experience studying new materials and solutions for future industrial neutrino detectors, and provide them to Russian power units, including floating power plants
- Move towards precision measurement of the nuclear fuel burnup

- Target (TG) Gd-LS (1 g/l) in an inner SS tank, 1 m³
- G-catcher (GC) LS w/o Gd in an external SS tank, 1.8 m³
- Buffer pure LAB, 0.5 m³
- 16 R5912 PMTs in the TG, 12 in the GC
- Two muon veto plates on top

For detailed description: A. Abramov et al JINST 17 (2022) P09001

iDREAM basics

- 1 skid platform
- 2 muon plates
- 3 gantry mobile crane
- 4 pure p/e (outermost shielding layer)
- 5 cast iron shielding layer

	2021								2022												
	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11
Installation, commissioning																					
Debugging, test running																					
Antineutrino data-taking											No	DAQ									
Reactor ON/OFF	F	R-OFF		R-ON														R-OFF			

Detector installed in Mar-May 2021.

DAQ paused in Dec-2021 – Apr-2022 due to reasons not related to the detector state.

Current state: data-taking during R-OFF

Backgrounds

Backgrounds

iDREAM data treatment

- Detector response monitored every 2-3 days via ⁶⁰Co and ²⁵²Cf sources
- Because counting rate fluctuates, the event selection cuts evolve in time
- To account for this effect, iDREAM spectrum in every run is corrected with respect to the one chosen as a reference.
- Correction coefficients are obtained via the minimization of the difference between two spectra

For iDREAM calibration see poster #168 (A. Oralbaev)

Antineutrino signal

 $N_{det} = rac{\epsilon}{4\pi L^2} \cdot N_p \cdot rac{P_{th}}{E_f} \cdot \langle \sigma \rangle$ - predicted rate

 E_f from V. Kopeikin *et al*, Phys. Atom. Nucl. **67** (2004) 1963 $\langle \sigma \rangle$ from V. Kopeikin *et al*, Phys. Rev. D **104** (2021) L071301

Detection efficiency ϵ = 0.22 ± 0.01 (<u>not finalized yet</u>)

1788.6 ± 5.6_{stat.} day⁻¹

 $204.7 \pm 7.8_{stat.} day^{-1}$

σ region for predicted rate, calcul	ated
ccording to Z Djurcic <i>et al</i> 2009 J.	Phys.
: Nucl. Part. Phys. 36 045002 (inc	ludes
% error for efficiency)	
	σ region for predicted rate, calcul ccording to Z Djurcic <i>et al</i> 2009 J. : Nucl. Part. Phys. 36 045002 (incl % error for efficiency)

-400

1583.9 ± 9.6_{stat.} day⁻¹

-200

200

difference

212

6.906

75.09

28.63 / 30

15.52 ± 1.57

 57.48 ± 4.31

-0.7256 ± 4.4851

400 6 N_{exp}-N_{teor}, day

Entries

Std Dev

 χ^2 / ndf

Mean

Sigma

Constan

Mean

Conclusion

- As of today, 101.7 live days in R-ON and 27.5 live days in R-OFF mode are available. Accumulation of the statistics is ongoing
- Antineutrinos and fuel burn-up are clearly visible, no doubts in proper work of the detector as a counting device
- Understanding of the detector as a spectrometer in progress

iDREAM team

A. Abramov¹

A. Chepurnov²

A. Etenko^{1,3}

M. Gromov^{2,4}

- A. Konstantinov¹
- D. Kuznetsov¹
- E. Litvinovich^{1,3}
- G. Lukyanchenko⁵
- I. Machulin^{1,3}
- A. Murchenko¹
- A. Nemeryuk¹

R. Nugmanov¹

B. Obinyakov¹

- A. Oralbaev¹
- A. Rastimeshin¹

M. Skorokhvatov^{1,3}

S. Sukhotin¹

I. Zhutikov^{1,3}

¹National Research Centre Kurchatov Institute, Moscow
²Skobeltsyn Institute for Nuclear Physics, Lomonosov Moscow State University, Moscow
³National Research Nuclear University "MEPhl", Moscow
⁴Joint Institute for Nuclear Research, Dubna
⁵Faculty of Physics, Lomonosov Moscow State University, Moscow

