New Reactor antineutrino spectrum on base of Double Chooz experimental data

Petr Naumov¹, Svetlana Silaeva², Artemy Vlasenko^{1,2}, Valery Sinev^{1,2}

¹ National Research Nuclear University (MEPhI) ² Institute for Nuclear Research RAS

International Conference on Particle Physics and Astrophysics 2022, MEPhI, Moscow

Plan of the talk

- Experimental site
- Data accumulated by the detector
- Subtraction of backgrounds
- Monte Carlo simulation of positron spectrum registration
- Transformation of measured positron spectrum to antineutrino one
- Splitting experimental $\overline{v_e}$ spectrum on components
- Fitting of components by calculation
- New antineutrino spectra
- Cross sections of spectra and Double Chooz experimental cross section
- Conclusion

Double Chooz experimental site

Detector positions from top view Each Detector construction

Experimental data taken by near detector

~200 000 events in the spectrum

To get positron spectrum one needs to subtract backgrounds:

- Accidentals
- ⁹Li-⁸He cosmogenic
- Fast neutrons and stopped muons

Nature Physics, (2020) 16, 558–564. doi: 10.1038/s41567-020-0831-y Arxiv:1901.09445 [hep-ex]

Treatment of experimental spectrum

Experimentally measured beta-spectrum produced by cosmogenic isotopes ⁹Li and ⁸He.

Normalized ⁹Li and ⁸He betaspectrum on measured counting rate of these events in near detector.

Positron and antineutrino spectra

Cross section: Strumia and F. Vissani, Phys. Lett. B 564, 42-54 (2003) doi:10.1016/S0370-2693(03)00616-6 [arXiv:astroph/0302055 [astro-ph]]. G. Ricciardi, N. Vigniaroli, F. Vissani, JHEP 08 (2022) 212 doi:10.1007/JHEP08%282022%29212 [arXiv:2206.05567 [hep-ph]].

Monte Carlo transformation function calculation

Transformation function

Experimental antineutrino spectrum

Experimental antineutrino spectrum as a result of division experimental ideal spectrum by transformation function

²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu experimental antineutrino spectra as a result of splitting experimental spectrum according to their parts
²³⁵U - 0.52, ²³⁸U - 0.087, ²³⁹Pu - 0.333, ²⁴¹Pu - 0.06

Fitting of experimental spectra by calculated ones

International Conference on Particle Physics and Astrophysics 2022, MEPhI, Moscow

Cross sections of calculated spectra [×10-43 cm²/fission]

	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	DC
Эта работа	5.992	9.066	4.113	5.839	5.63
Rovno	6.241	9.089	4.269	5.948	5.815
ILL	6.395	8.903	4.185	5.768	5.840
Vogel	6.498	9.135	4.508	6.520	6.066
MEPhI	6.404	9.267	4.383	6.489	5.985
Huber &	6.658	10.08	4.364	6.031	6.154
Mueller					
Kopeikin et al.	6.308	9.395	4.33*	6.01*	5.900

Experimental Double Chooz $\sigma_{\rm f} = (5.71 \pm 0.06) \cdot 10^{-43} \, {\rm cm^2/fission}$

Calculation of other experiments cross sections using INR spectra

experiment	Core content				ⁱ σ _f x10 ⁴³	^{INR} σ _f x10 ⁴³	R
	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	[cm ² /fission]	[cm ² /fission]	
DC	0.520	0.087	0.333	0.060	5.71 ± 0.06	5.63	1.015
Bugey-4	0.538	0.078	0.328	0.056	5.752 ± 0.081	5.61	1.026
Daya Bay	0.561	0.076	0.307	0.056	5.91 ± 0.12	5.64	1.048

Conclusion

- New ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu antineutrino spectra are performed on base of Double Chooz measurement
- Superposition of cross sections per fission satisfy to most exact experimental cross section (Double Chooz)
- Systematically smaller values of calculated cross sections in compare with experimental ones can be explained by not accounting of spent fuel emission