Tagged neutrino beam in the P2O experiment

Anatoly Sokolov NRC "Kurchatov Institute" – IHEP, Protvino Nov 29 — Dec 2 Moscow, Russia

Outline

- **Protvino to ORCA (P2O) project**
- Neutrino tagging concept
- Neutrino channel project study at U70 (Protvino)
- □ Summary

NEUTRINO OSCILLATION

Appearance and Disappearance experiments

 $P(v_{\mu} \to v_{e}) = \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \cdot \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E}) \approx 0.05 \cdot \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E})$ $P(v_{\mu} \to v_{\mu}) = 1 - \sin^{2} 2\theta_{23} \cdot \cos^{4} \theta_{13} \cdot \sin^{2} (1.27\Delta m_{23}^{2} \frac{L}{E}) - P(v_{\mu} \to v_{e})$

Protvino to ORCA project

P2O: Protvino to ORCA

- Baseline 2588km ; beam inclination : 11.7° (cos θ = 0.2)
- ORCA position : 42° 48' 16.28" N , 06° 01' 53.06" E
- Deepest point 134km : 3.3 g/cm³
- First oscillation maximum 5.1 GeV

Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA Eur. Phys. J. C (2019) 79:758

(~100 participants, 27 Institutes)

The ORCA Detector

Digital Optical Module

- 31 x 3" PMTs
- Uniform angular coverage
- Directional information
- Digital photon counting
- Background rejection
- All data to shore

See P1.095: R. Bruijn, The KM3NeT DOM

7

Energy Resolutions

Shower

- Energy resolution better than 30% in relevant range
- Close to Gaussian

Федеральное государственное бюджетное учреждение «ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ имени А.А.Логунова Национального исследовательского центра «Курчатовский институт»

http://www.ihep.ru

IHEP neutrino experiment (1975 - 2000)

 $\pi(K) \to V_{\mu}(V_e, \overline{V}_{\mu}, \overline{V}_e)...$

 $p + A \rightarrow \pi(K) + X$

10

Neutrino Flux at the Far Detector Location

for 4×10²⁰ Protons on Target Phase I I = 90 kW

T = 5 year

Np = I/T × t × ϵ = 2 · 10¹³/5 c × 9 months × 0,85 = 0,8 · 10²⁰ p/year

Comparison of LBL Projects

• Energy versus baseline

NEUTRINO TAGGING CONCEPT

v tagging concept

Each neutrino is fully & precisely characterised from its decay partners Similar to old ideas [1] that the progress on Silicon Trackers makes now feasible

[1] S. P. Denisov et al., preprint IHEP 80-158, Serpukhov, 1980. Tagged Neutrino Facility at Protvino.

Neutrino channel scheme

 $p + A \rightarrow \pi(K) + X$

 $\pi(K) \to \nu_{\mu} \left(\nu_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{e} \right) \dots$

Neutrino channel scheme for the formation of "tagged" neutrinos beam

Tagged neutrino channel scheme

Green rectangles - quadrupole magnets, red triangles - dipole magnets, vertical yellow lines - coordinate planes of tagging stations.

Feasibility: NA62 as demonstrator

- *v* tagging implemented at NA62 (rare *K* decays) as a by-product
- **Calorimeters act also as v detectors** and with O(10¹²⁻¹³) K decays /y: ~1400v/y from $K \rightarrow \mu v + K_{\mu 3}$ interact in Lkr+MUV (20 + 66 ton)
- K and μ properties precisely measured thanks to GTK (Si-Pixel) and STRAW trackers
- Dedicated trigger line will collect these events from July 2021

Toward a Dedicated Tagged Neutrino Beam

- Difference between NA62 and a v-beam: **beam particle rate**
- Rate is limited by trackers irradiation and occupancy

	Available Max.	Radiation Max.	Flux Time
NA62-GTK	since 2015	$10^{14-15} n_{eq} /\mathrm{cm^2}$	200 MHz/cm ²
HL-LHC	before 2028	$10^{16-17} n_{eq} / \mathrm{cm^2}$	2000 MHz/cm ²

- Handles to **limit particle flux**:
 - spread particles in time (slow extraction) and space (beam size)
 - \succ select only relevant π **momentum range**
- ENUBET beam line was optimized with ~similar concerns
- > expected rate [1] is ~10¹² part/s on ~1m radius surf. at pipe end:
 - \rightarrow already matches the capabilities of the GTK technology!

1 m radius [1] Pupilli, NeuTel 2019

π -meson kinematics at the tagging station

 $\Theta_{\pi_z zz}$ angle measuring in the xz plane

 π -meson deflection angle in the xz plane when passing through a magnet

$$\Theta_{\pi_{xz}} = \arctan\left(\frac{x_2 - x_1}{z_2 - z_1}\right)$$

$$\delta\Theta_{\pi_{xz}} = \frac{30\vec{B}L_B}{P_{\pi_{xz}}}$$

The angle shift $\delta \Theta_{\pi_z z}$ can be determined by measuring the shift in the direction of the π -meson

$$\tan\left(\Theta_{\pi_{xz}} + \delta\Theta_{\pi_{xz}}\right) = \frac{\left(x_3 - \left(\frac{x_2 - x_1}{z_2 - z_1}\right)(z_3 - z_1) + x_1\right)}{L_B} + \tan\left(\Theta_{\pi_{xz}}\right)$$

π meson beam parameters

 $\vec{p}_{\nu} = \vec{p}_{\pi} - \vec{p}_{\mu}$

Geant4

Coordinate planes - $50x50 \text{ cm}^2$ (Si, d ~ 0.5 mm) $10^9 \pi/s/\text{cm}^2$

Errors in coordinate planes

- coulomb scattering $X/X_0 = 0.5\%$
- cell structure of the plane **0.1 x 0.1 mm²**

π , μ momenta measurement

π decay vertex measurement

Neutrino vertex in a detector

Neutrino momentum measurement

Neutrino at the far detector

L_{det} = 2595 km

 $N(v_{\mu})(ev)$ (E_{v} = 3 ÷ 6 GeV, **10¹³ protons**,

 $M_{det} = 1 \ kt$, $Z_{dec \ tube} = 150 \ m$, $R_{dec \ tube} = 75 \ cm$)

 $= 0.955 \cdot 10^{-8}$ ev

Phase II = 90 kW~ 610 v_{μ} ev/yearNp = 0.8 · 10^{20} p/year~ 130 v_e ev/year

HK, DUNE ~ 100, 150 v_e /year 1.3 MW

Results for the 1st step of the beam line optimization

Summary

- **Neutrino tagging**: follow v from creation to detection
 - \checkmark reconstruct each and every $\pi \rightarrow \mu \nu$ decay to precisely characterize ν
 - \checkmark associate v seen in v-detector to its $\pi\mu v$ genitor
- **Technological** challenge is the beam particle rate and addressed by
 - ✓ **beam line studies** (efficient static focusing, large beam)
 - ✓ high intensity trackers
- Applications: v oscillation LBNE with NuTAG and mega-ton natural water Cerenkov v detector
 - ✓ large **statistic** obtain from detector mass
 - ✓ **lower beam intensity** allows v tagging
 - ✓ tagging brings **high energy resolution** and **low systematics**
 - Beam line studies are in progress