The 6th International Conference on Particle Physics and Astrophysics (ICPPA-2022)

Designing a tagged neutrino beam at the U-70 accelerator complex

Roman Sinyukov
NRC "Kurchatov Institute" - IHEP, Protvino

P2O: Protvino to ORCA

Vacuum oscillation maximum at $\mathrm{E} \approx 5 \mathrm{GeV}$

Objective:
produce a neutrino beam with an energy peak at about 5 GeV

Current operation:

- Protons up to $70 \mathrm{GeV}(60 \mathrm{GeV})$
- 10^{13} protons/cycle
- $5 \mu \mathrm{~s}$ spill every 9 s

Upgradable up to 90-450 kW

Conceptual design of beamline

Configuration of the optical system and collimator parameters were chosen based on the requirements of the neutrino spectrum

Conceptual design of beamline

Conceptual design of beamline

M1-M4 bending magnets 2 m long, $\mathrm{H} \times \mathrm{V}=1200 \times 200 \mathrm{~mm}$

Conceptual design of beamline

[^0]
Conceptual design of beamline

Spatial distributions of pions at the beginning of the decay tube

$$
\begin{array}{ll}
\sigma\left[x^{\prime}\right]=1.75 \mathrm{mrad} & x^{\prime}=p_{x} / p_{z} \\
\sigma\left[y^{\prime}\right]=3.05 \mathrm{mrad} & y^{\prime}=p_{y} / p_{z}
\end{array}
$$

$$
\theta_{\pi} \approx \sqrt{x^{\prime 2}+y^{\prime 2}} \quad \sigma\left[\theta_{\pi}\right] \cong 3.9 \mathrm{mrad}
$$

$$
\begin{aligned}
& \sigma[x]=39.7 \mathrm{~mm} \\
& \sigma[y]=43.6 \mathrm{~mm}
\end{aligned}
$$

The spectrum of pions at the beginning of the decay tube

Relativistic case

$$
\begin{gathered}
E_{v_{\max }}=\left(1-m_{\mu}^{2} / m_{\pi}^{2}\right) \cdot p_{\pi}=0.43 \cdot p_{\pi} \\
\mathrm{RMS}_{E_{\pi}}=10.5 \mathrm{GeV} \longrightarrow E_{v_{\max }} \sim 4.5 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{array}{ll}
7.31 \cdot 10^{9} & \pi^{+} \text {per cycle } \\
4.46 \cdot 10^{9} & \pi^{-} \text {per cycle }
\end{array}
$$

Neutrino radial distribution at the far detector

$$
\cos \theta^{*}=\frac{\cos \theta-\boldsymbol{\beta}}{1-\boldsymbol{\beta} \cos \theta} \quad \theta \equiv \theta_{\pi v}
$$

$$
E=\frac{E^{*}}{\gamma(1-\beta \cos \theta)}
$$

Generating the uniform distribution of $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}^{*}$ in the center-of-mass within the limits corresponding to the capture angles $\theta_{\text {min }}, \boldsymbol{\theta}_{\text {max }}$ of the detector in the lab frame (same logic for φ)

Neutrino spectrum at the far detector

Fast calculation algorithm $\quad \theta_{d} \ll \sigma\left[\theta_{\pi}\right]$

$$
\begin{aligned}
L_{d} & \approx 2595 \mathrm{~km} \\
\boldsymbol{\theta}_{\boldsymbol{d}} & \approx 0.04 \mathrm{mrad} \\
\theta_{\pi} & \approx \sqrt{x^{\prime 2}+y^{\prime 2}} \\
\sigma\left[\theta_{\pi}\right] & \cong 3.9 \mathrm{mrad}
\end{aligned}
$$

detector
Neutrino angle distribution \approx const centre $\frac{d N}{d \Omega}=\frac{1}{4 \pi \gamma^{2}\left(1-\beta \cos \theta_{\pi v}\right)^{2}}$

We assume that all neutrinos always fall in the center of the
$\times 10^{-8}$
 detector, which allows us to clearly determine their energies

$$
E=\frac{E^{*}}{\gamma\left(1-\beta \cos \theta_{\pi v}\right)}
$$

Events $_{v} \sim \boldsymbol{\Phi}_{\boldsymbol{v}}, \boldsymbol{E}_{\boldsymbol{v}}$ and $\boldsymbol{m}_{\text {det }}$

Summary

- The conceptual design of the beamline is presented
- Fast calculation algorithm was applied to adjust and optimize the channel
- The optics of the beamline are designed to produce pi mesons in the pulse range of $8-14 \mathrm{GeV} / \mathrm{c}$, which provides the required range of neutrino energies corresponding to the first oscillation maximum

[^0]: C1 ($3 \times \emptyset 200 \mathrm{~mm}$), C2 $200 \times 200 \mathrm{~mm}^{2}$ aperture

