Detection of solar neutrinos from the CNO cycle with Borexino

Alina Vishneva

Joint Institute for Nuclear Research Dubna, Russia

> ICPPA-2022 02/12/2022

Solar neutrinos

pp chain

A. Vishneva (JINR)

Solar neutrinos: CNO cycle

CNO cycle

Produces ~ **1% of solar energy**, but expected to be dominant in heavier stars compared to the Sun

Direct probe of **solar metallicity** – abundance of heavy elements in the Sun

Solar metallicity problem

Metallicity is the abundance of elements heavier than helium (including C, N, O)

Measurement of CNO neutrino flux can be an independent probe of solar metallicity

Spectroscopic measurements of solar metallicity:

High metallicity (HZ)

- **GS98** *N. Grevesse and A. Sauval*, Space Sci. Rev. 85 (1998)
- MB22 E. Magg et al., A&A 661, A140 (2022)

Low metallicity (LZ) In disagreement with helioseismology

- AGSS09 *M. Asplund et al.*, Annu. Rev. Astron. Astrophys. 47 (2009)
- C11 E. Caffau et al., Sol. Phys. 268 (2011)
- AAG21 M. Asplund et al., A&A 653 (2021)

A. Vishneva (JINR)

Borexino experiment

A. Vishneva (JINR)

Borexino experiment

Inner detector

- 278 tonnes of liquid scintillator
- Extremely radiopure: ²³⁸U and ²³²Th contamination ~10⁻¹⁸ g/g
- Light yield ~500 p.e./MeV
- Energy resolution @ 1 MeV: ~5%
- Spatial resolution @ 1 MeV: ~10 cm

Outer detector

- 2.1 kt of ultra-pure water
- Active muon veto system

CNO measurement challenge

Similar spectral shapes of CNO, pep and ²¹⁰Bi background \rightarrow strong anti-correlation

pep neutrino constraint

- pp/pep production rate ratio is well known from nuclear physics
- Global analysis of solar neutrino data with solar luminocity constraint:
- J. Bergstrom et al., J. High Energy Phys 2016, 132 (2016)

 $R(pep) = 2.74 \pm 0.04 \text{ counts/day}/100 \text{ t}$

²¹⁰Bi constraint

A. Vishneva (JINR)

²¹⁰Bi constraint

2D fit to obtain the ²¹⁰Po rate:

 $R_{\rm Po}(\rho, z) = R_{\rm Po}^b \left[1 + \frac{\rho^2}{a^2} + \frac{(z - z_0)^2}{b^2} \right]$

 $R(^{210}Bi) \le R(^{210}Po) = 10.8 \pm 1.0 \text{ counts/day}/100 \text{ t}$

Low Polonium Field – region with almost no convective currents and low amount of ²¹⁰Po

A. Vishneva (JINR)

Spectral analysis technique

Radial distribution

CNO neutrino flux

First observation: Nature 587 (2020) 577-582 New measurement: arXiv:2205.15975 [hep-ex]

Dataset: Jan 2017 – Oct 2021 (Phase III)

Model presictions: HZ-SSM rate: 3.52±0.52 cpd/100 t LZ-SSM rate: 4.92±0.78 cpd/100 t

Rate: $6.7^{+2.0}_{-0.8}$ cpd/100 tonnes Flux: $6.6^{+2.0}_{-0.9} \times 10^8$ cm⁻² s⁻¹

7σ significance of CNO observation!

Tension with LZ model ~ 2σ

Solar metallicity

Temperature dependence:

$$\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM} \propto ({\rm T_c}/{\rm T_c}^{\rm SSM})^{\tau_{\rm B}} \quad \tau_{\rm B} = 24$$

$$\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM} \propto \underbrace{\left(\frac{n_{\rm CN}}{n_{\rm CN}^{\rm SSM}}\right)}_{\substack{n_{\rm CN} \\ n_{\rm CN}^{\rm SSM}}} \times ({\rm T_c}/{\rm T_c}^{\rm SSM})^{\tau_{\rm O}} \quad \tau_{\rm o} = 20$$
direct
dependence on
metallicity

Borexino result $\frac{(\Phi_{\rm O}/\Phi_{\rm O}^{\rm SSM})}{(\Phi_{\rm B}/\Phi_{\rm B}^{\rm SSM})^k} \propto \frac{n_{\rm CN}}{n_{\rm CN}^{\rm SSM}}$ Global analysis

This coefficient value is chosen to minimize the uncertainty related to opacity and other inputs

Solar metallicity

arXiv:2205.15975 [hep-ex]

Thank you for your attention!

A. Vishneva (JINR)

Solar neutrino spectra

A. Vishneva (JINR)

CNO neutrino detection in Borexino @ ICPPA-2022 (Moscow)

Signal and background sources

Neutrinos are detected via (v-e) elastic scattering

Main selection criteria:

- Muon veto
- Fiducial volume

