Resonance structure of the chargeexchange strength function of Tellurium isotopes 128 and 130

A. N. Fazliakhmetov^{1,2,3}, Yu. S. Lutostansky¹, B. K. Lubsandorzhiev², G. A. Koroteev^{1,2,3}, A. Yu. Lutostansky¹, V. N. Tikhonov¹

¹National Research Centre "Kurchatov Institute", Moscow, Russia ²Institute for Nuclear Research of the Russian Academy of Sciences ³Moscow Institute of Physics and Technology

The experiments to measuring $T_{1/2}^{2 u\beta\beta}$ and searching for $0 u\beta\beta$ in $^{130}{ m Te}$

Name	Location	Description	Status
SNO+	Sudbury Neutrino Observatory, Canada	Liquid scintillator inside an acrylic sphere with a mass of 780 tons with natural Tellurium dissolved in it with a concentration of 0.5% by mass (1.3 tons ¹³⁰ Te) of the first phase of the experiment to search the process 0ν $\beta\beta$ in ¹³⁰ Te. An array of ~9400 photomultiplier tubes observes the sphere.	From May 2017 to June 2019 was the water phase of the experiment. In 2019 the sphere was filled with scintillator. By the end of 2022, the scintillator is expected to be loaded with Tellurium [2]. Expected sensitivity: $T_{1/2}^{0\nu\beta\beta} > 7 \times 10^{26}$ years for ¹³⁰ Te at 90% confidence level after 5 years of data set if Tellurium concentration will be increased to 5% $(T_{1/2}^{0\nu\beta\beta} > 9 \times 10^{25}$ years at concentration 0.3%) [1].

- 1. SNO+ Collaboration, Advances in High Energy Physics, 6194250 (2016)
- 2. Ana Sofia Inácio for the SNO+ collaboration., PoS PANIC2021 (2022), 274

CUORE	Laboratori Nazionali del Gran Sasso (LNGS), Italy	An array of 988 TeO ₂ crystals (206 kg ¹³⁰ Te), which operate both as a source of decaying isotopes and as a cryogenic bolometric detector	Analysis of data collected from May 2017 to July 2019 with a total exposure of 103.6 kg*years for ¹³⁰ Te gives a limit for the half-life $T_{1/2} = 3.2 \times 10^{25}$ years in the $0\nu\beta\beta$ channel with 90% confidence level [3]. For the double beta decay period $T_{1/2}^{2\nu} = 7.71^{+0.08}_{-0.06}(stat.)^{+0.12}_{-0.15}(syst.) \times 10^{20}$ years [4].
COBRA	Laboratori Nazionali del Gran Sasso (LNGS), Italy	An array of CdZnTe semiconductor crystals that operate both as a source of decaying isotopes and as a semiconductor detector	Analysis of the data collected from September 2011 to February 2015 gives a limit for ¹³⁰ Te $T_{1/2} = 6.1 \times 10^{21}$ years on the $0\nu\beta\beta$ channel with a 90% confidence level [5].
NEMO-3	Modane Underground Laboratory (LSM), France	Direct detection of two electrons from β-decay in a tracking chamber and in a calorimeter	An analysis of data collected during an exposure time of 1275 days for 661 g of isotope ¹³⁰ Te gives a value $T_{1/2}^{2\nu} = 7.0 \pm 0.9$ (стат.) ± 1.1 (сист.) $\times 10^{20}$ years [6].

3. D. Q. Adams et al., Phys. Rev. Lett. 124, 122501 (2020)
4. D. Q. Adams et al., Phys. Rev. Lett. 126, 171801 (2021)
5. Joachim Ebert et al., Phys. Rev. C 94, 024603 (2016)
6. R. Arnold *et al.*, Phys. Rev. Lett. 107, 062504 (2011)

Supposed construction of Large volume detector at BNO

Charge-exchange excitations scheme for ¹²⁸Te

Charge-exchange excitations scheme for ¹³⁰Te

Experimental data: charge-exchange reactions ^{128,130}Te(³He, t)^{128, 130}I

P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, et. al. Phys. Rev. C 86, 044603 (2012).

02.12.2022

Charge-exchange reactions comparison: (³He,t) and (p,n)

R. Madey, B.S. Flanders, B.D. Anderson, A.R. Baldwin, and J.W. Watson, <u>Phys. Rev. C 40, 540 (1989).</u> P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, *et. al*. <u>Phys. Rev. C 86, 044603 (2012).</u>

02.12.2022

A. Fazliakhmetov ICPPA 2022

Experimental data fit: ¹²⁸Te(³He, *t*)¹²⁸I

Experimental data fit: 130 Te(3 He, t) 130 I

ISOBARIC STATES MICROSCOPIC DESCRIPTION - 1

The Gamow–Teller resonance and other charge-exchange excitations of nuclei are described in Migdal TFFS-theory by the system of equations for the effective field:

$$V_{pn} = e_{q} V_{pn}^{\omega} + \sum_{p'n'} \Gamma_{np,n'p'}^{\omega} \rho_{p'n'} \qquad V_{pn}^{h} = \sum_{p'n'} \Gamma_{np,n'p'}^{\omega} \rho_{p'n'}^{h}$$
$$d_{pn}^{1} = \sum_{p'n'} \Gamma_{np,n'p'}^{\xi} \varphi_{p'n'}^{1} \qquad d_{pn}^{2} = \sum_{p'n'} \Gamma_{np,n'p'}^{\xi} \varphi_{p'n'}^{2}$$

where V_{pn} and V_{pn}^{h} are the <u>effective fields</u> of quasi-particles and holes, respectively;

 V_{pn}^{ω} is an <u>external</u> charge-exchange <u>field</u>; d_{pn}^{1} and d_{pn}^{2} are effective vertex functions that describe change of the <u>pairing gap Δ </u> in an external field;

 Γ^{ω} and Γ^{ξ} are the amplitudes of the <u>effective nucleon–nucleon interaction</u> in, the particle–hole and the particle–particle channel;

 $ho,
ho^h, arphi^1$ and $arphi^2$ are the corresponding transition densities.

Effects associated with change of the pairing gap in external field are negligible small, so we set $\underline{d_{pn}}^1 = \underline{d_{pn}}^2 = 0$, what is valid in our case for external fields having zero diagonal elements

Width:
$$\Gamma = -2 \operatorname{Im} \left[\sum (\varepsilon + iI) \right] = \Gamma = \alpha \cdot \varepsilon |\varepsilon| + \beta \varepsilon^3 + \gamma \varepsilon^2 / \varepsilon | + O(\varepsilon^4) \dots$$
, where $\alpha \approx \varepsilon_{\mathrm{F}}^{-1}$
 $\Gamma_{\mathrm{i}}(\omega_{\mathrm{i}}) = 0.018 \omega_{\mathrm{i}}^2 \operatorname{MeV}$

ISOBARIC STATES MICROSCOPIC DESCRIPTION - 2

For the GT effective nuclear field, system of equations in the energetic λ -representation has the form [FFST Migdal A. B.]:

$$V_{\lambda\lambda'} = V_{\lambda\lambda'}^{\omega} + \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\lambda\lambda'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\lambda\lambda'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V_{\nu\nu'} = \sum_{\lambda_{1}\lambda_{2}} \Gamma_{\nu\nu'\lambda_{1}\lambda_{2}}^{\omega} A_{\lambda_{1}\lambda_{2}} V_{\lambda_{2}\lambda_{1}} + \sum_{\nu_{1}\nu_{2}} \Gamma_{\nu\nu'\nu_{1}\nu_{2}}^{\omega} A_{\nu_{1}\nu_{2}} V_{\nu_{2}\nu_{1}};$$

$$V^{\omega} = e_{q}\sigma\tau^{+}; \quad A_{\lambda\lambda'}^{(p\bar{n})} = \frac{n_{\lambda}^{n}(1-n_{\lambda'}^{p})}{\epsilon_{\lambda}^{n}-\epsilon_{\lambda'}^{p}+\omega}; \quad A_{\lambda\lambda'}^{(n\bar{p})} = \frac{n_{\lambda}^{p}(1-n_{\lambda'}^{n})}{\epsilon_{\lambda}^{p}-\epsilon_{\lambda'}^{n}-\omega}.$$

$$\begin{cases} \frac{G -T \text{ selection rules:}}{\Delta j = 0; \pm 1} \\ \frac{\Delta j = 0; \pm 1}{\Delta j = 1! 2} \\ \frac{\Delta j = 0; j = 1 \pm 1/2 \\ \Delta j = -1! 2 \\ \frac{\Delta j = -1!}{j = 1-1/2} \\ \frac{\Delta j = -1!}{j$$

where n_{λ} and ε_{λ} are, respectively, the occupation numbers and energies of states λ .

Local nucleon–nucleon δ-interaction Γ^{ω} in the Landau-Migdal form:

 $\Gamma^{\omega} = \mathcal{C}_0 \left(f' + g' \, \boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \right) \, \boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \, \delta(\boldsymbol{r}_1 \boldsymbol{\cdot} \boldsymbol{r}_2)$

where coupling constants of: f'=1.35 – isospin-isospin and g'=1.22 – spin-isospin quasiparticle interaction with L = 0. Matrix elements M_{GT} : $M_{GT}^2 = \sum_{\lambda_1 \lambda_2} \chi_{\lambda_1 \lambda_2} A_{\lambda_1 \lambda_2} V_{\lambda_1 \lambda_2}^{\varpi}$ where $\chi_{\lambda \nu}$ – mathematical deductions G -T M_i^2 values are normalized in FFST: $\sum M_i^2 = e_q^2 3(N-Z)$

Effective quasiparticle charge $e_a^2 = 0.8 - 1.0$ *is the "quenching" parameter of the theory.*

"Quenching" effect (Losing of sum rule in beta-strength) is the main in heavy nuclei ~ 50%

Charge-exchange strength function for 128 Te(3 He, t) 128 I

1 – P. Puppe et. al. Phys. Rev. C 86, 044603 (2012).

2 - TFFS with $e_q = 0.9$

Charge-exchange strength function for 130 Te(3 He, t) 130 I

1 – P. Puppe et. al. Phys. Rev. C 86, 044603 (2012).

2 - TFFS with $e_q = 0.9$

Conclusion

- The charge-exchange strength functions S(E) of the isotopes ¹²⁸Te, ¹³⁰Te are presented
- Both experimental data on the charge-exchange strength functions S(E) obtained in (³He, t) reactions and the S(E) strength functions calculated in the microscopic theory of finite fermi-systems (TFFS) are analyzed.
- The resonance structure of the strength function *S(E)* is investigated, and the Gamow-Teller and Pygmy resonances are distinguished. The energies and matrix elements of these resonances are calculated.
- Next step: to calculate solar neutrino capture rate (in development). Capturing solar neutrinos is an unavoidable background in experiments searching for neutrinoless double beta decay.