# Generative adversarial networks in particle physics

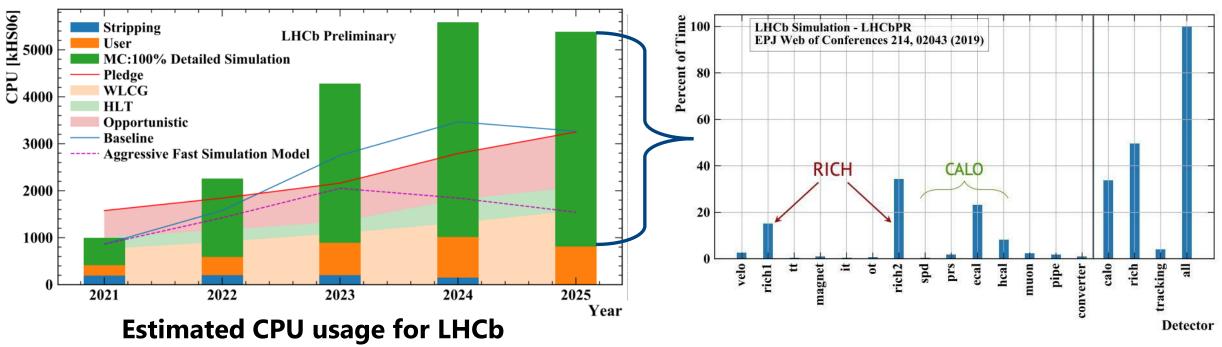
<u>Sergey Mokhnenko</u>, Denis Derkach, Artem Maevskiy, Fedor Ratnikov, Alexander Rogachev HSE University, Moscow, Russia

The 6th international conference on particle physics and astrophysics 29 November 2022 - 2 December 2022



# Fast simulation problem

- Simulation is an important component in high-energy physics.
- The amount of computation is growing faster than the speed of the processors.
- This problem will get worse with increasing luminosity

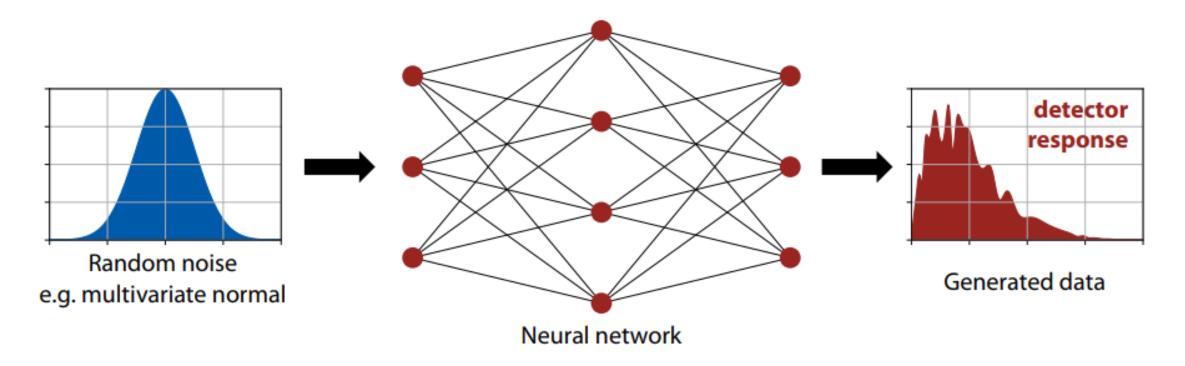


LHCb-FIGURE-2019-018

- Several approaches are available: parametric, pre-simulated library, ...
- Generative machine learning models combine the two approaches and allow one to build a parametric model from an existing pre-simulated library.

#### S. Mokhnenko, et. al., NRU HSE

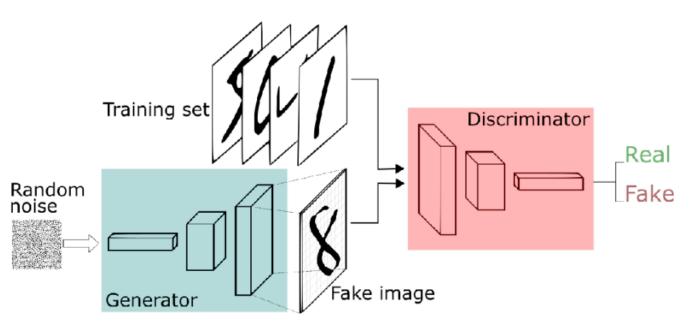
#### How can a neural network generate data?



- The task of the generative model is to construct events that correspond to some probability distribution.
- Generating a sample is fast as well-developed and effective industrial ML methods are used.

#### Generative adversarial networks (GANs)

- There are different approaches to generative models in ML
- Generative adversarial networks (GANs) offer the fastest sampling
- GANs consist of two neural networks:
  generator is trained to creates samples,
  discriminator is trained to distinguishes
  true samples from those created by
  generator
- As a result, generator and discriminator dynamically improve each other

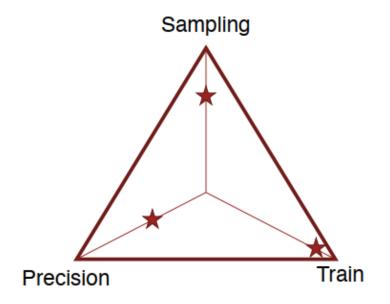


## Comparison GANs with traditional methods

- GANs sampling is much faster than direct Geant4
  - Geant4 is accurate and reliable.
  - Geant4 is still considered as a reference
- GANs are flexible comparing to rigid parametric models.
- GANs produce nice smooth distributions comparing to discrete distributions produced by library
- However, making GANs to really work, requires care of some typical problems, which we are going discuss in a moment.

#### Generative models characteristics

- Fast Sampling
  - much faster than detailed Geant4
  - models can get complicated
- Very Fast training
  - retrain can be done very fast
  - train process still should be periodically controlled
- Good Precision
  - complicated models can be quite precise
  - precision is controlled by train sample statistics

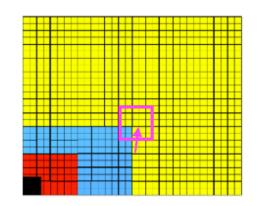


# **Dimensionality reduction**

We can hardly build generative model for the full detector

- many channels high dimensional objects.
- Response of the impact particle is usually local
- can limit generated object to the local area of the response

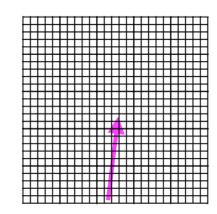
#### Global -> local ML



15

cell X

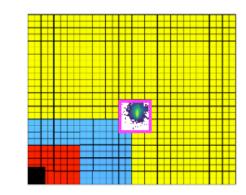
20



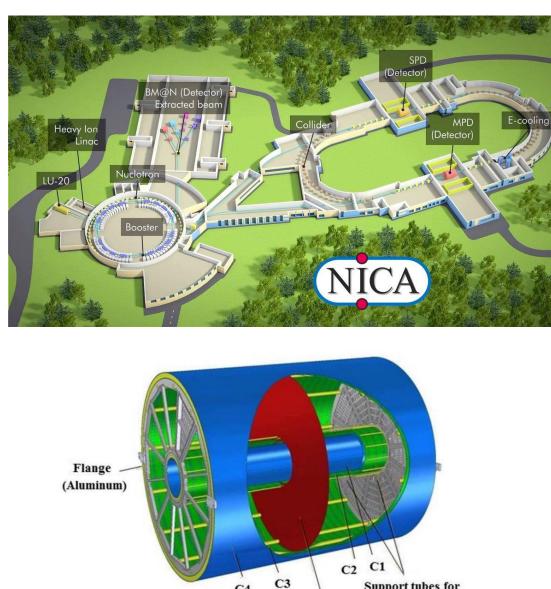
local ML -> global

2.7 2.4

2.1 1.8 1.5 1.2 0.9 0.6



## Time projection chamber

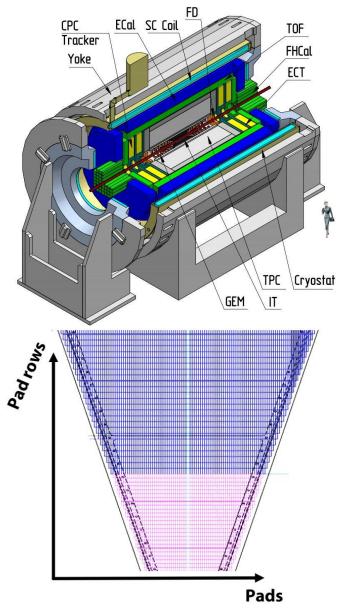


C4

Central HV electrode

Support tubes for

field cage

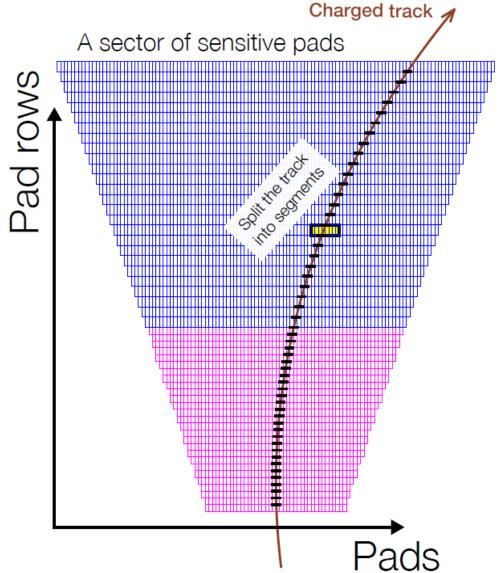


3968 pads \* 12 sectors \* 2 endcaps = 95232 total pads

S. Mokhnenko, et. al., NRU HSE

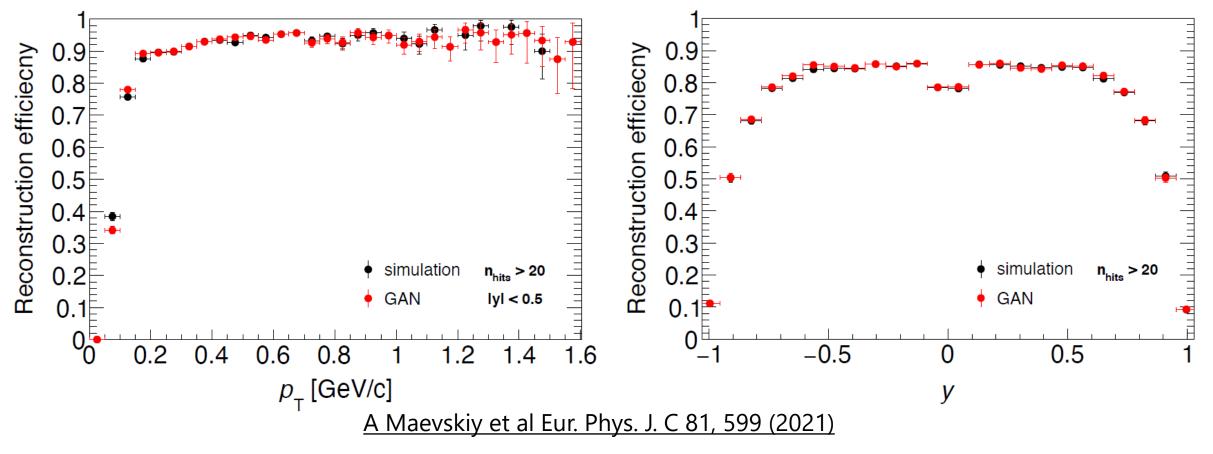
## Assumptions for fast simulation

- Factorizing the pad rows
  - dividing tracks to segments, each contributing to a particular pad row
  - can model such contributions independently!
- Signal localization (both position & time)
  - model only a small area instead of the full row
  - model only a few time buckets
- Target dimensionality:
  8 pads x 16 time buckets
  (instead of original 95 232 \* 310)



# Physics-level model quality metric

At reconstruction level we can consider reconstruction efficiencies



Agreement looks pretty good. Our assumptions make sense

## Another dimensionality reduction approach

The detector may be too complex to fully simulate. For example, accurate modeling of Cherenkov detectors would include:

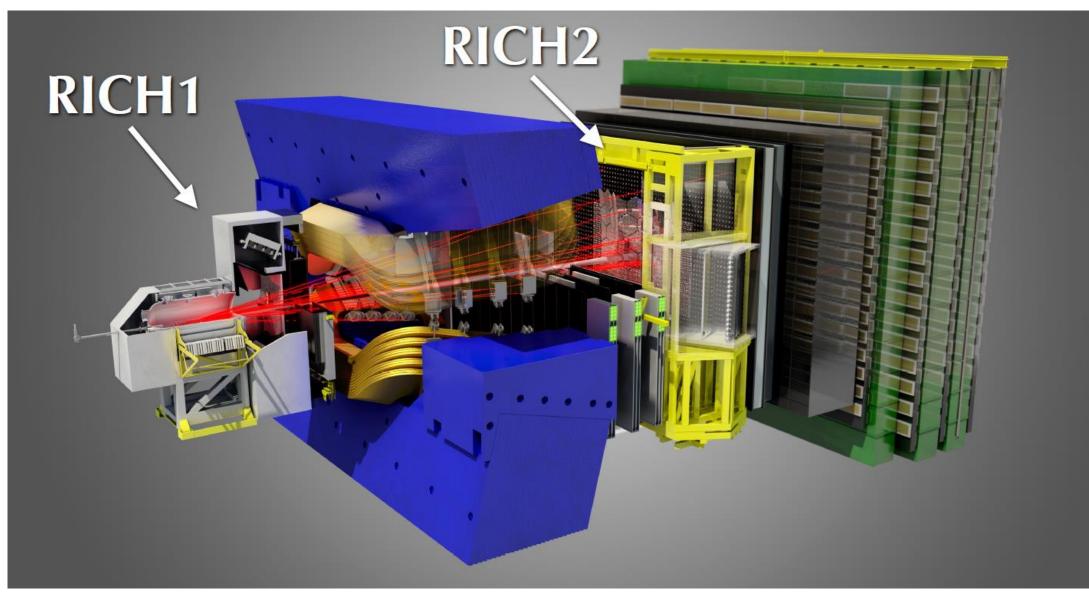
- tracing the particles through the radiators
- Cherenkov light generation
- photon propagation, reflection, refraction and scattering
- Photon Detector (photo-cathode + silicon pixel) simulation

These require significant computing resources

However, such detectors are used only for particle identification.

It is possible to train a generative model for direct conversion of track kinematics to PID variables (just 5 numbers: RichDLLe, RichDLLµ, RichDLLk, RichDLLp, RichDLLOthers)

#### Cherenkov detectors at LHCb



## Problem statement

Main goal is fast generation of PID parameters (RICH DLLs), given particle type and track characteristics Train sample:

Geant4 based simulation

Input:

- P momentum
- $\eta$  pseudorapidity
- nSPDHits number of hits in the Scintillating Pad Detector

Output:

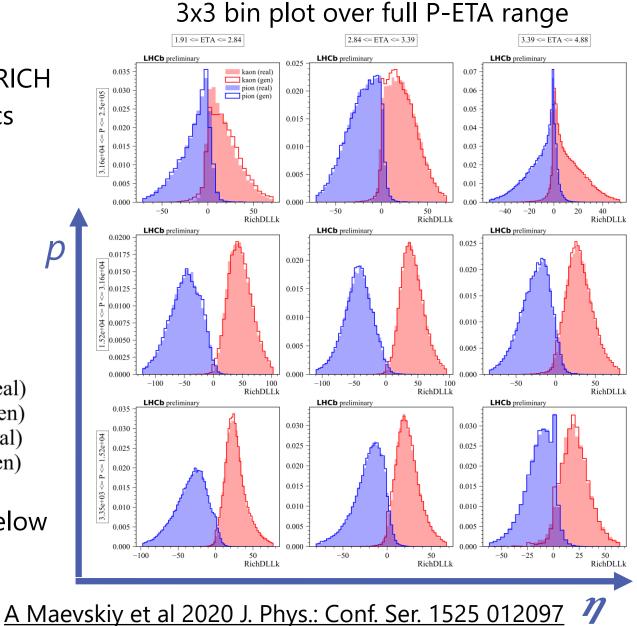
► 5 output variables (RichDLLx,  $x \in e$ ,  $\mu$ , k, p, below threshold)

kaon (real)

kaon (gen)

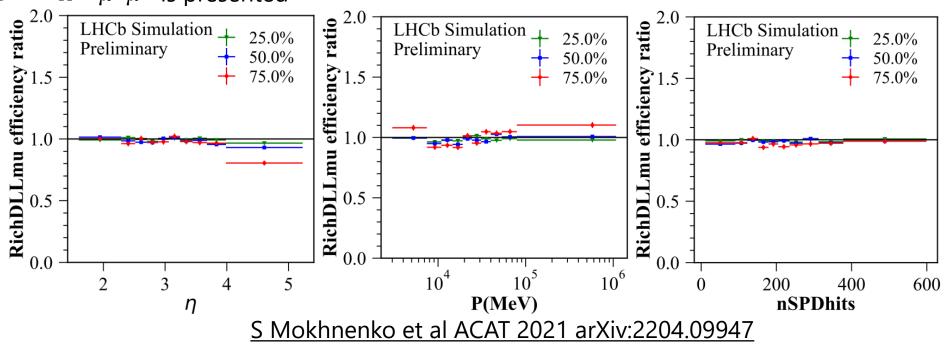
pion (real)

pion (gen)



# Model stability

- We want to check that model trained on data samples in limited phase space would generalize to the full phase space.
- We trained GAN on simulated data limited calibrated samples for decays: Inclusive  $J/\psi$  and  $B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-})K^{\pm}$ . The ratio of efficiencies between GAN predictions and simulated events for decay  $B^{\pm} \rightarrow K^{*\pm}\mu^{+}\mu^{-}$  is presented



On a qualitative level, the model demonstrates stability of metrics important for physical analysis.

#### Fine tune specific metric

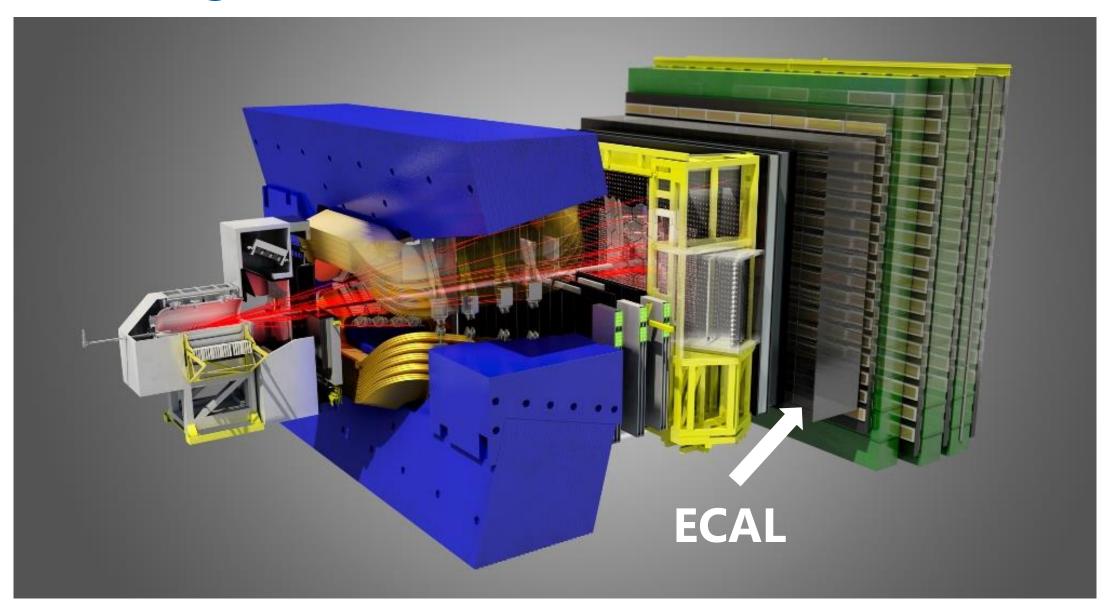
Question:

How can we enforce generative model to learn specific physics requirements with higher priority?

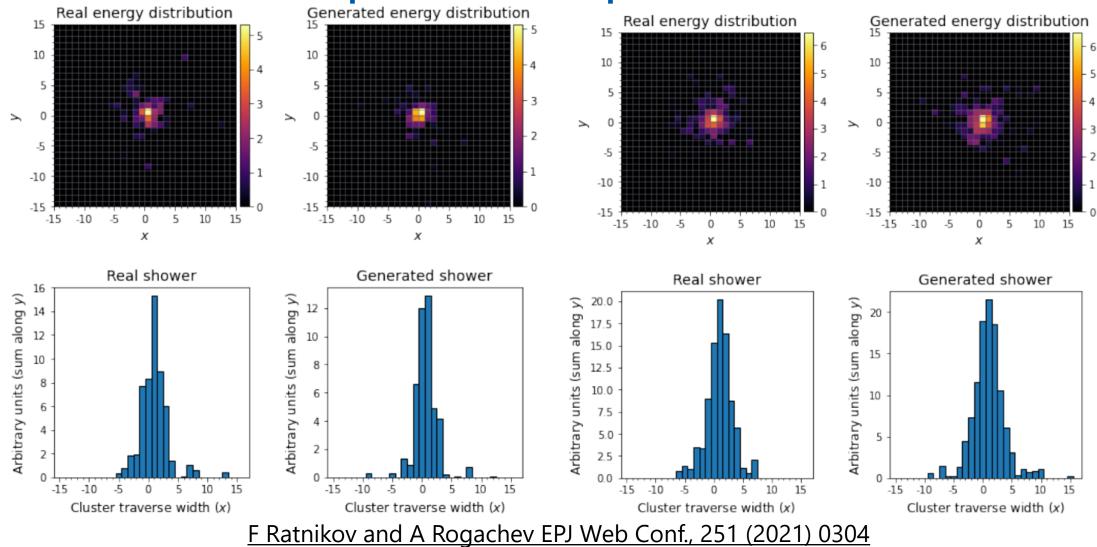
Answer:

- If the target metric is differentiable, you can include it directly in the loss function
- If the target metric is more complex and cannot be expressed as a computational graph:
  - construct an auxiliary surrogate regressor to estimate the target metric for the generated object
  - consider surrogate metric as an object feature
  - train generative model with emphasis on the target feature and the target regressor simultaneously

#### Electromagnetic Calorimeter at LHCb



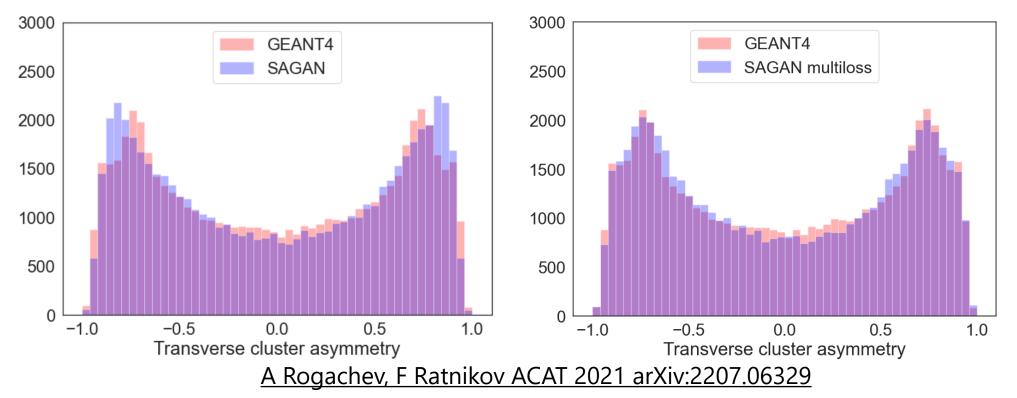
#### Generated samples example



An excellent description of the basic features

# Asymmetry distribution

- Additional regressor that evaluates asymmetry, the distribution of asymmetry calculated over generated samples improved
- The regressor and GAN are fitted simultaneously



If some metric is important to us, it can be explicitly taken into account in the model

#### Conclusion

- Generative adversarial networks may boost simulations of elementary particle detectors by orders of magnitude compared to regular Geant4.
- Dimension of problem may be significantly reduced by considering specific structure of detector.
- High-level detector response may be generated bypassing simulating lowlevel signal.
- Generalizability models require special care.
- Specific metrics may be enforced by appropriate training procedures.





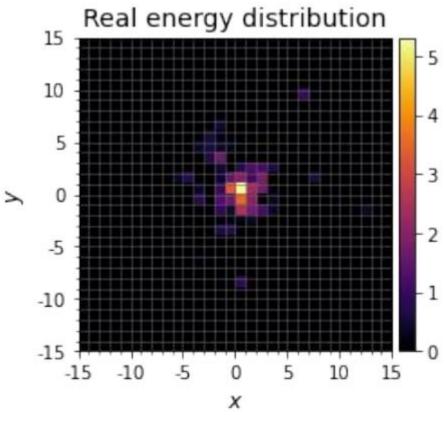
#### Problem statement

Main goal is to generate energy distribution in ECAL. Train sample:

Geant4 based simulation

Input:

- ParticlePoint (x,y,z) known starting point location
- ParticleMomentum (p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>) –known momentum Output:
- Consider 20 mm cell to fit both 40 mm and 60 mm cells
- EnergyDeposit 30×30 energy distribution matrix, shower width < 600 mm</p>



Example log output

### Problem statement

Main goal is fast generation of the signal for Multi-Purpose Detector in Time projection chamber Train sample:

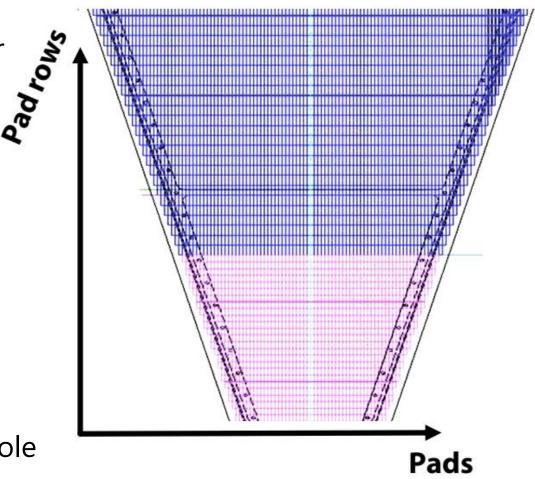
Simulated data for pions

Input:

- 2 angles ( $\theta$ ,  $\phi$ )
- 3 coordinates per track segment

Output:

- 95 232 · 310 elements (pads x time buckets)
- Conditioned on the track parameters for the whole event



# Library vs Generative Approach

Reference dataset is necessary to train generative model Reference dataset may be used to sample objects directly

- approach accommodated by CMS, ATLAS, LHCb
- PRO library approach comparing to generative models aggregated distributions are guaranteed by construction
- PRO generative models comparing to library approach discreetness of events
  - partly compensated by energy scaling

speed

- massive matrix operations vs massive object search

size

- both transient and persistent

From technical perspective, library-based and ML-based modules have very similar interfaces for both gathering train data and inferencing objects

#### S. Mokhnenko, et. al., NRU HSE

# GAN for NICA Multi-Purpose Detector



# GAN for LHCb Cherenkov detectors



# GAN for LHCb Calorimeter

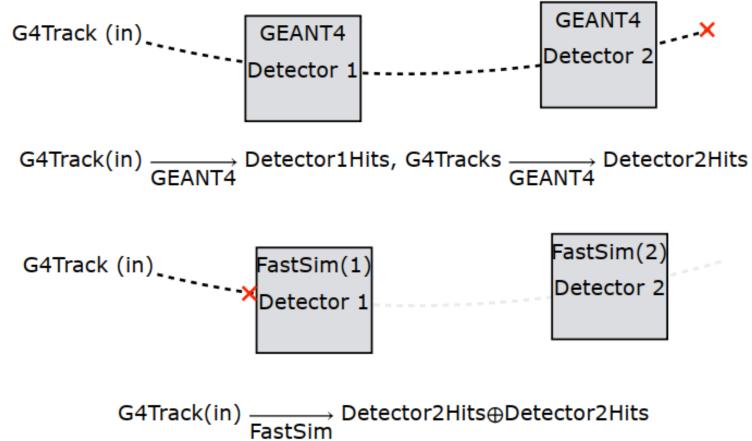


# **Possible approaches**

- GANs can be used to sample:
  - Raw signal images from the detector
  - High-level reconstruction results
- GANs can be trained using:
  - Real data
  - Simulated data
- GANs can be used to simulate
  - Whole detector
  - Individual sub-detectors

# **Operation Scheme**

To speed up Geant4 we need to intercept G4Track in front of the detector, generate detector response, fill DetHits structures



## **Evaluation metric**

We measure the **efficiency** of RichDLLx cuts at various quantiles of the RichDLLx distribution:

 $\varepsilon = \frac{number \ of \ tracks \ above \ x\% \ threshold}{total \ number \ of \ tracks}$ 

- Do this as a function of the input variables:  $\varepsilon(P, \eta, nSPDHits)$
- Calculate the efficiency ratio between
  GAN predictions and simulated events (in bins of a variable):

 $efficiency \ ratio = \frac{\varepsilon_{GAN}}{\varepsilon_{simulated}}$ 

