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► Simulation is an important component in high-energy physics. 

► The amount of computation is growing faster than the speed of the processors.

► This problem will get worse with increasing luminosity

► Several approaches are available: parametric, pre-simulated library, … 

► Generative machine learning models combine the two approaches and allow one to build a 

parametric model from an existing pre-simulated library.

Fast simulation problem
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Estimated CPU usage for LHCb



How can a neural network generate data?
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► The task of the generative model is to construct events that correspond to 

some probability distribution. 

► Generating a sample is fast as well-developed and effective industrial ML 

methods are used. 



► There are different approaches to 

generative models in ML

► Generative adversarial networks (GANs)

offer the fastest sampling

► GANs consist of two neural networks:

generator is trained to creates samples,

discriminator is trained to distinguishes 

true samples from those created by 

generator

► As a result, generator and discriminator 

dynamically improve each other

Generative adversarial networks (GANs)
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► GANs sampling is much faster than direct Geant4 

– Geant4 is accurate and reliable.

– Geant4 is still considered as a reference

► GANs are flexible comparing to rigid parametric models. 

► GANs produce nice smooth distributions comparing to discrete 

distributions produced by library 

► However, making GANs to really work, requires care of some typical 

problems, which we are going discuss in a moment.

Comparison GANs with traditional methods
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► Fast Sampling

– much faster than detailed Geant4

– models can get complicated

► Very Fast training

– retrain can be done very fast

– train process still should be periodically controlled

► Good Precision

– complicated models can be quite precise

– precision is controlled by train sample statistics

Generative models characteristics
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We can hardly build generative model for 

the full detector

► many channels - high dimensional 

objects. 

Response of the impact particle is usually 

local 

► can limit generated object to the local 

area of the response

Dimensionality reduction
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Global -> local ML

local ML -> global



Time projection chamber
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3968 pads * 12 sectors * 2 endcaps = 95232 total pads



► Factorizing the pad rows

– dividing tracks to segments, each

contributing to a particular pad row

– can model such contributions independently!

► Signal localization (both position & time)

– model only a small area instead of the full row

– model only a few time buckets

► Target dimensionality:

8 pads x 16 time buckets

(instead of original 95 232 * 310) 

Assumptions for fast simulation
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At reconstruction level we can consider reconstruction efficiencies

Agreement looks pretty good. Our assumptions make sense

Physics-level model quality metric
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The detector may be too complex to fully simulate. For example, accurate modeling of 

Cherenkov detectors would include: 

► tracing the particles through the radiators

► Cherenkov light generation

► photon propagation, reflection, refraction and scattering

► Photon Detector (photo-cathode + silicon pixel) simulation

These require significant computing resources

However, such detectors are used only for particle identification.

► It is possible to train a generative model for direct conversion of track kinematics to 

PID variables (just 5 numbers: RichDLL𝑒, RichDLL𝜇, RichDLLk, RichDLL𝑝, 

RichDLLOthers)

Another dimensionality reduction approach

S. Mokhnenko, et. al., NRU HSE 11



Cherenkov detectors at LHCb
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Main goal is fast generation of PID parameters (RICH 

DLLs), given particle type and track characteristics

Train sample: 

► Geant4 based simulation

Input:

► P – momentum

► 𝜂 – pseudorapidity

► nSPDHits – number of hits in 

the Scintillating Pad Detector

Output:

► 5 output variables (RichDLL𝑥, 𝑥 ∈ 𝑒, 𝜇, k, 𝑝, below 

threshold)

Problem statement
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3x3 bin plot over full P-ETA range

A Maevskiy et al 2020 J. Phys.: Conf. Ser. 1525 012097

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012097


► We want to check that model trained on data samples in limited phase space would generalize to the full 

phase space.

► We trained GAN on simulated data limited calibrated samples for decays: Inclusive 𝐽/𝜓 and

𝐵± → 𝐽/𝜓 𝜇+𝜇− 𝐾±. The ratio of efficiencies between GAN predictions and simulated events for decay 

𝐵± → 𝐾∗±𝜇+𝜇− is presented

Model stability  
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S Mokhnenko et al ACAT 2021 arXiv:2204.09947

On a qualitative level, the model demonstrates stability of metrics important for physical analysis.



Question:

► How can we enforce generative model to learn specific physics requirements with 

higher priority? 

Answer: 

► If the target metric is differentiable, you can include it directly in the loss function 

► If the target metric is more complex and cannot be expressed as a computational 

graph: 

– construct an auxiliary surrogate regressor to estimate the target metric for the generated object 

– consider surrogate metric as an object feature 

– train generative model with emphasis on the target feature and the target regressor 

simultaneously

Fine tune specific metric
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Electromagnetic Calorimeter at LHCb
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ECAL



An excellent description of the basic features 

Generated samples example
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► Additional regressor that evaluates asymmetry, the distribution of asymmetry 

calculated over generated samples improved

► The regressor and GAN are fitted simultaneously

► If some metric is important to us, it can be explicitly taken into account in the model

Asymmetry distribution
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► Generative adversarial networks may boost simulations of elementary 

particle detectors by orders of magnitude compared to regular Geant4.

► Dimension of problem may be significantly reduced by considering 

specific structure of detector.

► High-level detector response may be generated bypassing simulating low-

level signal. 

► Generalizability models require special care.

► Specific metrics may be enforced by appropriate training procedures.  

Conclusion
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›

Backup



Main goal is to generate energy distribution in ECAL.

Train sample: 

► Geant4 based simulation

Input:

► ParticlePoint (x,y,z) – known starting point location

► ParticleMomentum (px, py, pz) –known momentum

Output:

► Consider 20 mm cell to fit both 40 mm and 60 mm 

cells

► EnergyDeposit – 30×30 energy distribution matrix, 

shower width < 600 mm

Problem statement
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Example log output



Main goal is fast generation of the signal for

Multi-Purpose Detector in Time projection chamber

Train sample: 

► Simulated data for pions

Input:

► 2 angles (𝜃, 𝜙)

► 3 coordinates per track segment

Output:

► 95 232 ⋅ 310 elements (pads x time buckets)

► Conditioned on the track parameters for the whole 

event

Problem statement
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Reference dataset is necessary to train generative model

Reference dataset may be used to sample objects directly

► approach accommodated by CMS, ATLAS, LHCb

► PRO library approach comparing to generative models

aggregated distributions are guaranteed by construction

► PRO generative models comparing to library approach

discreetness of events

– partly compensated by energy scaling

speed

– massive matrix operations vs massive object search

size

– both transient and persistent

From technical perspective, library-based and ML-based modules have very similar interfaces for both gathering train data 

and inferencing objects

Library vs Generative Approach
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›

GAN for NICA 
Multi-Purpose Detector



›

GAN for LHCb
Cherenkov detectors



›

GAN for LHCb Calorimeter



► GANs can be used to sample:

– Raw signal images from the detector 

– High-level reconstruction results 

► GANs can be trained using:

– Real data

– Simulated data

► GANs can be used to simulate

– Whole detector

– Individual sub-detectors

Possible approaches
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To speed up Geant4 we need to intercept G4Track in front of the detector, 

generate detector response, fill DetHits structures

Operation Scheme
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Evaluation metric
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► We measure the efficiency of RichDLLx 

cuts at various quantiles of the RichDLLx 

distribution:

𝜀 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑠 𝑎𝑏𝑜𝑣𝑒 𝑥% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑠

► Do this as a function of the input variables: 

𝜀(𝑃, 𝜂, 𝑛𝑆𝑃𝐷𝐻𝑖𝑡𝑠)

► Calculate the efficiency ratio between 

GAN predictions and simulated events

(in bins of a variable): 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝜀𝐺𝐴𝑁

𝜀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

Evaluation metric


