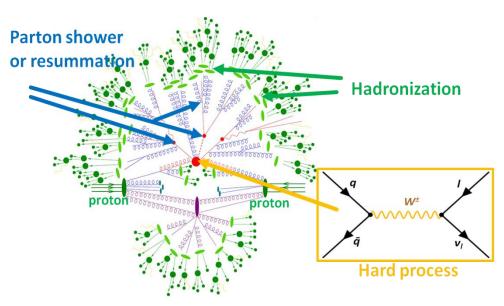
NNLO QCD predictions of charge asymmetry distributions for inclusive W-boson hadroproduction

Kadir Ocalan - Necmettin Erbakan University, Konya, Turkey The 6th International Conference on Particle Physics and Astrophysics (ICPPA2022)

29 Nov – 2 Dec 2022, Moscow, Russia

- Outline of the talk
 - ✓ A brief motivation
 - ✓ The master formula
 - ✓ W boson & lepton charge asymmetry
 - ✓ Computational setup & fiducial requirements
 - ✓ Theoretical uncertainties
 - \checkmark Comparison with the data
 - ✓ Forward distributions at higher energies
 - \checkmark Impact of p_T^I on charge asymmetries at 13 TeV
 - \checkmark Predictions in the p^w_T bins at 13 TeV
 - ✓ Conclusion


✓ Presented here the main phenomenological results from the charge asymmetry predictions acquired in perturbative QCD for W boson hadroproduction, based on the following original papers:

- arXiv:2105.14265, NNLO QCD predictions in the forward region
- arXiv:2108.04570, Impact of lepton p_T threshold on charge asymmetry predictions

Motivation

- Weak vector boson (W and Z boson) production at hadron colliders including the CERN LHC constitutes prominent benchmark processes:
 - precision tests of QCD and EW sectors of the SM
 - valuable inputs for parton distribution functions (PDFs) in the proton
 - improved background modeling for some SM processes and in BSM searches
 - calibrating detector responses for leptons, jets, and missing energy signatures
- > Notably enabling stringent tests of MC generators and (non)perturbative QCD calculations

> Produced in abundance in leptonic final states $W \rightarrow lv$ and $Z/\gamma^* \rightarrow l^+l^-$ ($l=e, \mu$), offering clean experimental signatures such as in pp collisions at the LHC > A typical W boson event is characterized by one isolated charged lepton with high transverse momentum and large missing transverse energy due to the neutrino

The master formula

- We consider the pp collision as hadronic process $p_1(P_1) + p_2(P_2) \rightarrow W + X \rightarrow lv + X$ where P_1 and P_2 are the momenta of the colliding protons p_1 and p_2 , respectively
- The differential hadronic cross section $d\sigma$ is expressed by the generic formula: $d\sigma(p_1p_2 \rightarrow W + X) = \sum_{i,j} \int_0^1 dx_1 \int_0^1 dx_2 f_{i,p_1}(x_1,\mu_F^2) f_{j,p_2}(x_2,\mu_F^2) d\hat{\sigma}_{ij}(x_1P_1,x_2P_2;\mu_F^2)(1 + O(\Lambda_{QCD}/Q))$
- $f_{ip_1,jp_2}(x,\mu_F^2)(i,j=q,\bar{q},g)$ stand for parton distribution functions of the proton, μ_F is the corresponding factorization scale
- The partonic cross section $d\hat{\sigma}_{ij}$ is calculated in QCD perturbation theory:

$$d\hat{\sigma}_{ij}(P_1, P_2; \mu_F^2) = d\hat{\sigma}^{(0)}(P_1, P_2) + \alpha_s(\mu_R^2)d\hat{\sigma}^{(1)}(P_1, P_2; \mu_F^2) + \alpha_s^2(\mu_R^2)d\hat{\sigma}^{(2)}(P_1, P_2; \mu_F^2, \mu_R^2) + \mathcal{O}(\alpha_s^2)$$

- with α_S is the QCD running coupling, and μ_R is the renormalization scale. The leading order (LO) partonic cross section is $d\hat{\sigma}^{(0)} d\hat{\sigma}^{(1)}$ and $d\hat{\sigma}^{(2)}$ are the included next-to-LO (NLO) and next-to-NLO (NLO) corrections, respectively
- Here NNLO and beyond refer to precise prediction and robust uncertainty:

$$d\hat{\sigma}_{ij} \sim d\hat{\sigma}_{LO} \cdot (1 + \alpha_s + \alpha_s^2 + \alpha_s^3 + ...)$$
 Uncertainties: LO ~ $\mathcal{O}(100\%)$
fixed order: LO NLO NNLO N³LO + ... (for α_s =0.118) NLO ~ $\mathcal{O}(10\%)$
NNLO ~ $\mathcal{O}(1\%)$

W boson & lepton charge asymmetry

- W bosons produced primarily through the annihilation mechanisms as $u\bar{d} \rightarrow W^+$ and $d\bar{u} \rightarrow W^-$
- W⁺ bosons are produced more often than W⁻ bosons due to excess of two valence u quarks over one valence d quark in the proton
- Leading to a production asymmetry between W^+ and W^- bosons, referred to as the W boson charge asymmetry A_{VW} expressed differentially by $\sigma(W^+)$ and $\sigma(W^-)$ in rapidity y_W

$$A_{y_W} = \frac{d\sigma(W^+ \to l^+ \nu)/dy_W - d\sigma(W^- \to l^- \overline{\nu})/dy_W}{d\sigma(W^+ \to l^+ \nu)/dy_W + d\sigma(W^- \to l^- \overline{\nu})/dy_W}$$

- Limitation: W boson momentum p^{W}_{τ} and its rapidity y_{W} cannot be directly reconstructed owing to the neutrino leaving detector unobserved
- Alternatively in experiments, charge asymmetry from the decay letpon $A_{\eta l}$ is measured as a function of its pseudorapidity η_l (which is strongly correlated with y_W)

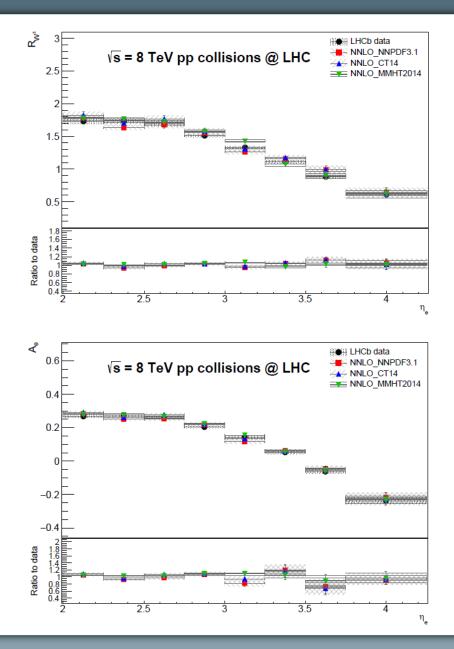
$$A_{\eta_l} = \frac{d\sigma(W^+ \to l^+ \nu)/d\eta_l - d\sigma(W^- \to l^- \overline{\nu})/d\eta_l}{d\sigma(W^+ \to l^+ \nu)/d\eta_l + d\sigma(W^- \to l^- \overline{\nu})/d\eta_l}$$

• $A_{\eta l}$ can provide significant constraints on the ratio of u and d quark densities as a function of parton Bjorken-x values, help discriminate among different PDFs, and be measured more precisely as some systematic uncertainties cancel in its ratio

Computational setup & fiducial requirements

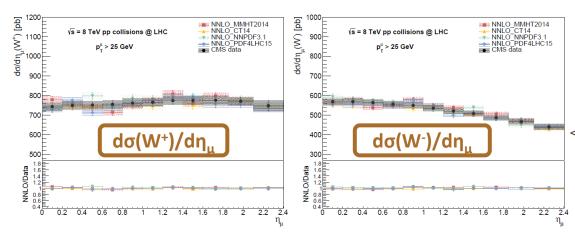
- MATRIX framework [arXiv: 0903.2120, 1711.06631] used for fixed-order calculations
- Resummation of logarithmic terms achieved by the MATRIX+RadISH [arXiv:2004.07720]
 - q_{τ} -subtraction method for the cancellation of IR divergences using a fixed cut-off as r_{cut}=0.0015 (0.15%)
 - various PDF models as NNPDF3.1, CT14, MMHT2014, and PDF4LHC15 exploited, all based on α_s =0.118
- The Fermi constant EW input scheme used including m_w=80.385 GeV and G_F=1.16639x10⁻⁵ GeV⁻²
- Central values for the scales $\mu_R = \mu_F = x_Q = m_W = 80.385$ GeV with x_Q as resummation scale
- Fiducial phase space requirements adopted from actual LHC experiments
- i. Calculations in the forward acceptance region $2.0 < \eta_1 < 4.25$:
 - the decay electron mode considered at center-of-mass energies 8 TeV, 13 TeV, and 14 TeV, where p^e_T>20 GeV required in line with the LHCb measurement [arXiv: 1608.01484]
- ii. Calculations in the full acceptance region $0 < \eta_1 < 4.5$:
 - the muon decay mode considered at 8 TeV, $p_T^{\mu}>25$ GeV ($p_T^{\mu}>20$ GeV) required in the region $0<\eta_{\mu}<2.4$ ($2.0<\eta_{\mu}<4.5$) in line with the CMS [arXiv: 1603.01803] and LHCb [arXiv: 1511.08039] measurements
 - the lepton (both e and μ) decay mode used at 13 TeV, $p_T^l > 20$, 25, 30, and 40 GeV required

Theoretical uncertainties

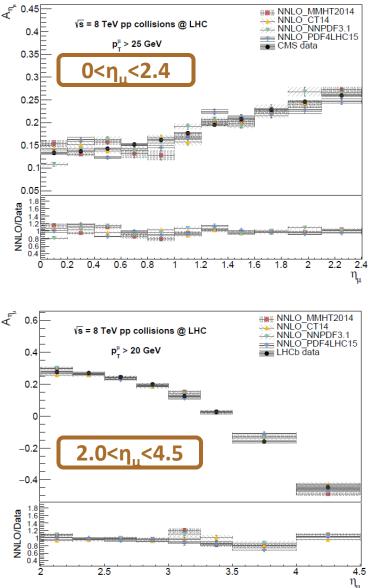

- Estimate of theoretical uncertainties from *scale variation*, *PDFs*, and α_s variation
- Scale uncertainties based on μ_R and μ_F variation up and down around their central values excluding $0.5 \le \mu_R/\mu_F \le 2.0$, customarily as 7-point scale variation scheme
- 9-point variation scheme considered (an additional 2-point variation with μ_R and μ_R fixed at the central value while resummation scale x_Q is varied up and down) in matching of fixed-order calculations to resummation

Uncertainty	NNPDF3.1	CT14	MMHT2014			
Values for $W^+ \rightarrow e^+ v$ process						
Scale (%)	0.74	0.76	0.78			
PDF (%)	1.96	2.40	1.64			
α_s (%)	1.06	1.04	1.10			
Total (%)	2.35	2.72	2.12			
	Values for W^- –	$\rightarrow e^- v$ process				
Scale (%)	0.72	0.64	0.80			
PDF (%)	2.22	2.90	1.50			
α_s (%)	1.16	1.00	1.14			
Total (%)	2.61	3.13	2.05			

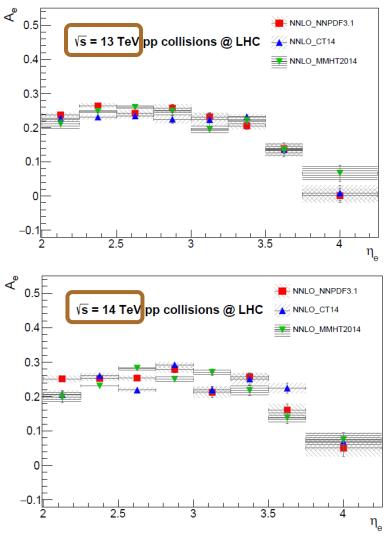
Estimated sizes of uncertainties for W boson inclusive cross section at NNLO


Comparison with the data - I

- W[±] decay processes in the *e* decay channel in the forward region $2.0 < \eta_e < 4.25$
- Compared with the 8 TeV LHCb data in the fiducial region for the ratio R_{w[±]} and A_{ηe} variables
- Predicted distributions at NNLO using different PDF sets are in agreement with the data
- Predictions using MMHT2014 PDF set describe data slightly better in the range ~5% over other PDF sets

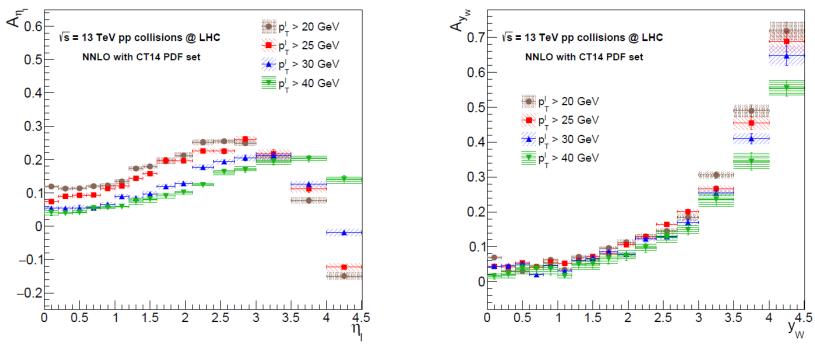

Comparison with the data - II

- Predicted distributions at NNLO accuracy compared < 0.4with the CMS (LHCb) data in the central $0 < \eta_{\mu} < 2.4$ (forward 2.0< $\eta_{\mu} < 4.5$) region separately
- Predictions in the μ decay channel at 8 TeV using differential cross sections dσ(W⁺)/dη_μ, dσ(W⁻)/dη_μ (bottom), and A_{η_μ} variable (right)


- The predicted distribution from CT14 describes the data slightly better over the predictions using the other PDF sets in the μ channel
- Sensitivity to discriminate among various PDF sets is enhanced in the A_{η_u} variable in comparison to the differential cross sections

Forward distributions at higher energies

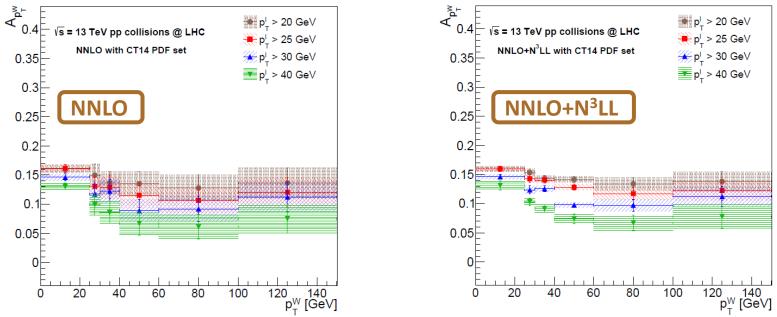
- Predicted A_{η_e} distributions at 13 TeV and 14 TeV represent important probe for u and d quark densities in the proton
- The forward region 2.0< η_1 <4.5 opens up unique opportunities for more accurate PDF determination at very small and large Bjorken-x vlues within 10⁻⁴<x<10⁻¹


	η_e	NNPDF3.1	CT14	MMHT2014
TeV	2.00-2.25	23.78 ± 0.6	22.84±0.9	21.11±1.3
	2.25-2.50	26.40 ± 0.7	23.13 ± 0.7	24.77±0.6
	2.50-2.75	24.27 ± 1.0	23.47 ± 0.7	26.00±1.6
013	2.75-3.00	25.75 ± 1.2	22.51 ± 1.1	24.85 ± 1.1
ß	3.00-3.25	23.18±1.2	22.38±1.9	19.50±1.0
F	3.25-3.50	20.57 ± 1.1	23.23 ± 0.8	22.07±1.1
	3.50-3.75	13.86±1.7	13.57±1.9	13.41±1.9
	3.75-4.25	0.15 ± 2.0	0.91±2.2	6.67±2.3
	η_e	NNPDF3.1	CT14	MMHT2014
\frown	2.00-2.25	25.15±0.9	20.60±1.3	19.90±1.6
	2.25-2.50	25.26±0.7	26.05±0.8	23.09 ± 0.5
@14 TeV	2.50-2.75	25.38 ± 0.7	21.91 ± 0.7	28.24±0.6
14	2.75-3.00	27.90 ± 1.0	29.22±0.8	25.04 ± 0.8
8	3.00-3.25	21.24±1.5	21.93 ± 1.1	27.04 ± 1.1
- e	3.25-3.50	25.74 ± 1.1	25.13±1.6	21.76 ± 1.5
	3.50-3.75	16.06±1.8	22.46±1.4	13.87 ± 1.7
			6.97±2.6	

Predicted A_{η_I} distributions tend to distinguish among numerous PDF sets increasingly from 8 TeV onwards 13 TeV and 14 TeV

Impact of p_{T}^{I} on charge asymmetries at 13 TeV

- Assess the impact of low- p_T^I thresholds at NNLO QCD in the entire region $0 < \eta_I < 4.5$
- Thresholds p_{T}^{I} >20, 25, 30, and 40 GeV examined in the combined lepton (e and μ) channel
- Represents a finer probe in constraining PDFs in the range 10⁻⁴<x<1
- Profit from both charge asymmetry definitions A_n and A_{yw}


- Minimum p_T^I values clearly exhibit dependence on the A_{η_I} and A_{γ_W} distributions
- The correlation between A_{η_l} and A_{γ_W} variables become more apparent in the forward region when the distribution shapes approach each other with increasing values of the p_T^l

Predictions in the p^{W}_{T} bins at 13 TeV

• The state-of-the-art predictions for $A_p w_T$, based on an analogous definition in bins of p^w_T

$$A_{p_T^W} = \frac{d\sigma(W^+ \to l^+ \nu)/dp_T^W - d\sigma(W^- \to l^- \overline{\nu})/dp_T^W}{d\sigma(W^+ \to l^+ \nu)/dp_T^W + d\sigma(W^- \to l^- \overline{\nu})/dp_T^W}$$

Fixed-order calculations are unable to sufficiently account for soft and collinear gluon radiation at low p^W_T values → exploit resummed calculations (up to N³LL accuracy) matched to fixed-order NNLO to have higher-accuracy

- Increasing p^I_T threshold yields lower values in both the central and forward regions
- Flatter distributions throughout almost the entire region, contrary to A_n and A_{yw}

Conclusion

- ✓ We have presented precise predictions for W boson and lepton charge asymmetry, with the inclusion of NNLO corrections in perturbative QCD based on existing PDF models, which were justified with the LHC data at 8 TeV
- ✓ Sensitivity to relative u and d quark densities in the proton and also in more constrained phase space with higher p^I_T thresholds provide unique set of input for better determination of PDFs
- ✓ Charge asymmetry distributions are shown to be prominent for discriminating among various PDF models
- ✓ W boson and lepton charge asymmetries are predicted to be more correlated with increasing p^I_T thresholds in the forward region
- ✓ Charge asymmetry in bins of p^w_T can offer an alternate probe for theoretical predictions
- ✓ Overall, the predicted results represent a substantial contribution to the context of the high-precision phenomenological studies.

Back-up slides