## Radiation of a twisted neutron in the presence of a dispersion medium

P.O. Kazinski ${ }^{\dagger}$ and G.Yu. Lazarenko ${ }^{\dagger}$

${ }^{\dagger}$ Physics Faculty, Tomsk State University, Tomsk, 634050, Russia e-mail: laz@phys.tsu.ru

6th International Conference on Particle Physics and Astrophysics Moscow, Russia From 29 November 2022 to 2 December 2022

## Various representations of particles

Wave, beam and packet

## plane wave:

wave packet:
wave beam:


Figure: Assuming the paraxial approximation $p_{z} \simeq p, p_{\perp} \ll p$, the characteristic dimensions of the real- and momentum-space distributions satisfy the uncertainty relations $/ \sim \hbar / \delta p$ and $w \sim \hbar / \delta p_{\perp}$ [K. Y. Bliokh et al., Phys. Rep. 690.1 (2017)]. $\equiv$. $\bar{\equiv}$.

## Twisted wave packets

See, for details, in K. Y. Bliokh et al., Phys. Rep. 690, 1 (2017).


## Methods for the generation of vortex beams

See, for details, in C. W. Clark et al., Nature 525, 504 (2015); Sarenac et al., Sci. Adv.8, eadd2002 (2022).


Figure: Schematics of basic methods for the generation of vortex beams.

## Twisted Neutrons

Profile of the wave packet

$$
\begin{equation*}
\varphi_{s}(\mathrm{p})=\delta_{s \sigma} k p_{\perp}^{|| |} \exp \left(-\frac{\left(p_{3}-p\right)^{2}}{4 \sigma_{3}^{2}}-\frac{\mathrm{p}_{\perp}^{2}}{4 \sigma_{\perp}^{2}}+i l \arg \left(p^{1}+i p^{2}\right)\right) \tag{1}
\end{equation*}
$$

Normalization constant

$$
\begin{equation*}
k^{-2}=(2 \pi)^{3 / 2} \sigma_{3} \sigma_{\perp}^{2}\left(2 \sigma_{\perp}^{2}\right)^{|/|}|/|!, \quad l \in \mathbb{Z} \tag{2}
\end{equation*}
$$

$\sigma= \pm 1$ characterizes the spin projection of the state onto the $z$ axis.

- The state (1) is the eigenvector of the projection of the total angular momentum operator on the $z$ axis with the eigenvalue $I+\sigma / 2$.
- The case $I=0$ describes a cylindrically symmetric Gaussian wave packet.

$$
\begin{equation*}
c(\mathrm{p})=k^{2} p_{\perp}^{2| |} \exp \left(-\frac{\left(p_{3}-p\right)^{2}}{2 \sigma_{3}^{2}}-\frac{\mathrm{p}_{\perp}^{2}}{2 \sigma_{\perp}^{2}}\right) . \tag{3}
\end{equation*}
$$

## Problem statement



Figure: The schematic representation of the experimental installation for observation of transition radiation.


Figure: Diagram showing s-polarized and p-polarized light relative.

## QED with wave packet

Lagrangian density of the system

$$
\begin{equation*}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu v}+\bar{\psi}\left[\gamma^{\mu}\left(i \partial_{\mu}-e A_{\mu}\right)-m\right] \psi-\frac{\mu_{a}}{2} F_{\mu v} \bar{\psi} \sigma^{\mu v} \psi \tag{4}
\end{equation*}
$$

$\mu_{a}$ is the anomalous magnetic moment, $m$ is the particle mass.
Quantum fields in the interaction picture

$$
\begin{equation*}
\hat{A}_{i}(x)=\sum_{\lambda} \int_{+} \frac{V d \mathrm{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 k_{0} V}}\left[\mathrm{a}_{i}^{(\lambda)}\left(k_{3} ; z\right) e^{-i k_{0} x^{0}+i \mathrm{k}_{\perp} x_{\perp}} \hat{c}_{\lambda}(\mathrm{k})+\text { H.c. }\right], \tag{5}
\end{equation*}
$$

$k_{0}=|\mathrm{k}|, V$ characterizes the normalization volume.

$$
\begin{equation*}
\mathrm{k}=k_{0} \mathrm{n}=k_{0}(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta), \tag{6}
\end{equation*}
$$

The integration region is restricted by the inequality $k^{3} \geqslant 0$.

## QED with wave packet

State of the Dirac particle

$$
\begin{equation*}
|\varphi\rangle:=\sum_{\alpha} \sqrt{\frac{(2 \pi)^{3}}{V}} \varphi_{\alpha}|\alpha\rangle, \quad \sum_{\alpha} \frac{(2 \pi)^{3}}{V}\left|\varphi_{\alpha}\right|^{2}=\sum_{s} \int d \mathrm{p}\left|\varphi_{s}(\mathrm{p})\right|^{2}=1 \tag{7}
\end{equation*}
$$

Density matrix

$$
\begin{equation*}
R_{s, \bar{s}}(\mathrm{p}, \overline{\mathrm{p}}):=\varphi_{s}(\mathrm{p}) \varphi_{\bar{s}}^{*}(\overline{\mathrm{p}}) \tag{8}
\end{equation*}
$$

Spin density matrix

$$
\begin{equation*}
\rho_{s, \bar{s}}(\mathrm{p}, \overline{\mathrm{p}}):=R_{s, \bar{s}}(\mathrm{p}, \overline{\mathrm{p}}) / c(\mathrm{p}), \quad c(\mathrm{p}):=\sum_{s} R_{s, s}(\mathrm{p}, \mathrm{p}), \quad \int d \mathrm{p} c(\mathrm{p})=1 \tag{9}
\end{equation*}
$$

## Reference

P.O. Kazinski, G.Yu. Lazarenko, Phys. Rev. A. 103, 012216 (2021).

## General result

## Inclusive radiation probability

$$
\begin{align*}
d P(\lambda, \mathrm{k} ; \varphi)= & \mu_{a}^{2} \int \frac{d \mathrm{pc}(\mathrm{p})}{\left|p_{3}^{\prime} p_{3}\right|} F_{i}^{(\lambda)}\left(\mathrm{k}, q_{3}\right)\left(F_{j}^{(\lambda)}\left(\mathrm{k}, q_{3}\right)\right)^{*} \times \\
& \left\{q^{2}\left[2 m^{2} \eta^{i j}-\left(p^{i}+p^{\prime i}\right)\left(p^{j}+p^{\prime j}\right) / 2\right]-2 m^{2} q^{i} q^{j}+\right.  \tag{10}\\
& \left.+2 i m\left[(q s) p_{\mu} q_{v}+q^{2} q_{\mu} s_{v} / 2\right] \varepsilon^{\mu v i j}\right\} \frac{d \mathrm{k}}{32 \pi^{3} k_{0}}
\end{align*}
$$

## Describes the properties of matter

$$
\begin{equation*}
F_{i}^{(\lambda)}\left(\mathrm{k}, q_{3}\right):=\int_{-\infty}^{+\infty} d x_{3} e^{i q_{3} x_{3}}\left(a_{i}^{(\lambda)}\left(k_{3} ; x_{3}\right)\right)^{*} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \varepsilon^{0123}=1, \quad \eta^{i j}=-\delta_{i j}, \quad q_{\mu}:=p_{\mu}-p_{\mu}^{\prime},  \tag{12}\\
& q^{2}=2\left(m^{2}-p p^{\prime}\right)=k_{3}^{2}-\left(p_{3}-p_{3}^{\prime}\right)^{2}<0 .
\end{align*}
$$

## Polarization of radiation

s-polarization vector

$$
\begin{equation*}
f^{(2)}(k) \sim\left[e_{3}, k\right] \tag{13}
\end{equation*}
$$

Inclusive radiation probability

$$
\begin{equation*}
d P(2, \mathrm{k} ; \varphi)=-\mu_{a}^{2} q^{2} \int \frac{d \mathrm{p} c(\mathrm{p})}{\left|p_{3}^{\prime} p_{3}\right|}\left(\left(\mathrm{p}, \mathrm{f}^{(2)}\right)^{2}+m^{2}\right)\left|F_{i}^{(2)}\right|^{2} \frac{d \mathrm{k}}{16 \pi^{3} k_{0}} \tag{14}
\end{equation*}
$$

In the limit of a small quantum recoil $k_{0} \ll p_{3} \beta_{3}$

$$
\begin{equation*}
q_{3} \approx k_{0}\left(1-\beta_{\perp} \mathrm{n}_{\perp}\right) / \beta_{3}, \quad \text { where } \quad \beta=\mathrm{p} /(m \gamma) \tag{15}
\end{equation*}
$$

The amplitude semiclassical radiation*

$$
\begin{equation*}
\left(\beta, \mathrm{F}^{(\lambda)}\left(\mathrm{k}, q_{3}\right)\right)^{*} / \beta_{3} \approx \int_{-\infty}^{+\infty} d t e^{-i k_{0} t}\left(\beta, \mathrm{~A}^{(\lambda)}\left(k_{3} ; x_{3}\right)\right) \tag{16}
\end{equation*}
$$

*L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford, 1962.

## Ideally conducting plate

If $p_{3} \gg \sigma_{3}$, where $\sigma_{3}^{2}$ is the dispersion of $p_{3}$ in the packet and

$$
\begin{equation*}
\mathrm{p}=(0,0, p), \quad p<0 \tag{17}
\end{equation*}
$$

Normal falling

$$
\begin{equation*}
d P(\lambda, \mathrm{k} ; \varphi)=-\mu_{a}^{2} m^{2} \int \frac{d \mathrm{pc}(\mathrm{p})}{\left|p_{3}^{\prime} p_{3}\right| q^{2}} \frac{k_{3}^{2} d \mathrm{k}}{4 \pi^{3} k_{0}} \tag{18}
\end{equation*}
$$

In the nonrelativistic limit, $\gamma^{2} \approx 1$

$$
\begin{equation*}
d P(\lambda, \mathrm{k} ; \varphi)=\mu_{\mathrm{a}}^{2} \frac{n_{3}^{2} d \mathrm{k}}{4 \pi^{3} k_{0}} \tag{19}
\end{equation*}
$$

## Ideally conducting plate

Probability radiation p-polarization

$$
\begin{equation*}
d P(1, \mathrm{k} ; \varphi)=\mu_{a}^{2}\left(1-\frac{(|/|+1) \sigma_{\perp}^{2} n_{3}^{2}}{m^{2}+n_{\perp}^{2} p^{2}}\right) \frac{d \mathrm{k}}{4 \pi^{3} k_{0}} \tag{20}
\end{equation*}
$$

Probability radiation s-polarization

$$
\begin{align*}
d P(2, \mathrm{k} ; \varphi) & =\frac{\mu_{a}^{2}}{m^{2}+n_{\perp}^{2} p^{2}}\left\{m^{2}-\frac{(|l|+1) \sigma_{\perp}^{2}}{\left(m^{2}+n_{\perp}^{2} p^{2}\right)^{2}}\left[m^{4}\left(1-3 n_{\perp}^{2}\right)-\right.\right.  \tag{21}\\
& \left.\left.-m^{2} p^{2} n_{\perp}^{2}\left(4-n_{\perp}^{2}\right)-p^{4} n_{\perp}^{4}\right]\right\} \frac{n_{3}^{2} d \mathrm{k}}{4 \pi^{3} k_{0}}
\end{align*}
$$

- The anomalous magnetic moment behaves as a "true" magnetic moment [V. A. Bordovitsyn, I. M. Ternov, and V. G. Bagrov, Spin light, Phys. Usp. 38, 1037 (1995)].
- In the ultrarelativistic limit, the expressions for the leading contributions to (20) and (21) turn into classical formulas of
[V. L. Ginzburg, V. N. Tsytovich, Transition Radiation and Transition Scattering (Hilger, Bristol, 1990)].


## Plasma permittivity $\varepsilon\left(k_{0}\right)=1-\frac{\omega_{0}^{2}}{k_{0}^{2}}$

Approximations

$$
\begin{equation*}
\frac{\omega_{p}}{k_{3}} \ll 1, \quad \text { and } \quad \frac{L \omega_{p}^{2}}{k_{3}} \ll 1 \tag{22}
\end{equation*}
$$

where $L$ - thickness plate.
Probability radiation s-polarization

$$
\begin{equation*}
d P(2, \mathrm{k} ; \varphi)=\mu_{a}^{2}\left(\frac{\omega_{p}}{2 k_{3}}\right)^{4} \int d \mathrm{pc}(\mathrm{p})\left(\frac{\beta_{3}-2 n_{3}}{\gamma}\right)^{2}\left(1+\left(\gamma \beta_{2}\right)^{2}\right) \frac{n_{3}^{2} d \mathrm{k}}{\left(2 \pi k_{0}\right)^{3}} \tag{23}
\end{equation*}
$$

Normal falling

$$
\begin{equation*}
d P(2, \mathrm{k} ; \varphi)=\mu_{a}^{2}\left(\frac{\omega_{p}}{2 k_{3}}\right)^{4}\left(\frac{\beta_{3}-2 n_{3}}{\gamma}\right)^{2}\left(1+\frac{(|I|+1) \sigma_{\perp}^{2}}{m^{2}}\right) \frac{n_{3}^{2} d \mathrm{k}}{\left(2 \pi k_{0}\right)^{3}} \tag{24}
\end{equation*}
$$

## Conclusion

1 A formula was obtained for the inclusive probability transition radiation from a neutron wave packet falling on a dispersive medium. It generalizes the results of the work Phys. Rev. A 103, 012216 (2021).
2 The semiclassical limit of the formula is found.
3 In transition radiation the probability to detect a photon with polarization vector lying in the reaction plane does not depend on the observation angle and the energy of the incident particle.
4 To date, corrections to the probability for the Gaussian profile of a wave packet of the order $\max \left[(1+|/|)\left(\bar{\lambda}_{c} / \sigma_{\rho}\right)^{2}\right] \approx 10^{-17}$ Nature 525, 504 (2015); Sci. Adv.8, eadd2002 (2022).
5 The transition radiation probability for high-energy photons is obtained.

