SOLITON CONFIGURATIONS AND GROUND STATES IN MAXIMAL GAUGED SUPERGRAVITY

Antonio Gallerati

Politecnico di Torino - Dipartimento di Scienza Applicata e Tecnologia - Torino, Italy

1 Introduction

1 Introduction

- 2 The model
 - Explicit solutions
 - Thermodynamics
- BPS solutions

1 Introduction

- 2 The model
 - Explicit solutions
- Thermodynamics
- BPS solutions

3 Conclusions

Solitons:

Solitons: special role in classical physics as well as in quantum and string theory, determining a richer structure of the full non-perturbative regime:

Solitons: special role in classical physics as well as in quantum and string theory, determining a richer structure of the full non-perturbative regime:

 originally used as "bounce solutions" to discuss the possible instability of the pure Kaluza-Klein vacuum ground state;

Solitons: special role in classical physics as well as in quantum and string theory, determining a richer structure of the full non-perturbative regime:

- originally used as "bounce solutions" to discuss the possible instability of the pure Kaluza-Klein vacuum ground state;
- generalizations of these soliton solutions have been also considered in the analysis of the semiclassical stability of non-susy AdS gravity;

Solitons: special role in classical physics as well as in quantum and string theory, determining a richer structure of the full non-perturbative regime:

- originally used as "bounce solutions" to discuss the possible instability of the pure Kaluza-Klein vacuum ground state;
- generalizations of these soliton solutions have been also considered in the analysis of the semiclassical stability of non-susy AdS gravity;
- soliton configurations can turn out to be the lowest energy solution with chosen boundary conditions, leading to a new kind of positive energy conjecture;

• it is possible to consider configuration featuring Wilson loops:

$$\int F = \oint A_{\varphi} \, d\varphi \neq 0$$

with suitable fields periodicity boundary conditions;

• it is possible to consider configuration featuring Wilson loops:

$$\int F = \oint A_{\varphi} \, d\varphi \neq 0$$

with suitable fields periodicity boundary conditions;

 under certain coordinates, a soliton can be obtained through a double Wick rotation of a BH solution

• it is possible to consider configuration featuring Wilson loops:

$$\int F = \oint A_{\varphi} \, d\varphi \neq 0$$

with suitable fields periodicity boundary conditions;

 under certain coordinates, a soliton can be obtained through a double Wick rotation of a BH solution

$$t \rightarrow it$$
, $\phi \rightarrow i\phi$,

• it is possible to consider configuration featuring Wilson loops:

$$\int F = \oint A_{\varphi} \, d\varphi \neq 0$$

with suitable fields periodicity boundary conditions;

 under certain coordinates, a soliton can be obtained through a double Wick rotation of a BH solution

$$t \rightarrow it$$
, $\varphi \rightarrow i\varphi$, $(Q_{\Lambda} \rightarrow iQ_{\Lambda})$

• it is possible to consider configuration featuring Wilson loops:

$$\int F = \oint A_{\varphi} \, d\varphi \neq 0$$

with suitable fields periodicity boundary conditions;

 under certain coordinates, a soliton can be obtained through a double Wick rotation of a BH solution

$$t \rightarrow it$$
, $\varphi \rightarrow i\varphi$, $(Q_{\Lambda} \rightarrow iQ_{\Lambda})$

 BPS configurations preserving some of the supercharges can be obtained analysing the explicit form of the Killing spinors equations.

We are going to consider a gauged supergravity with a single vector multiplet with FI terms.

We are going to consider a gauged supergravity with a single vector multiplet with FI terms. The bosonic Lagrangian has the general form:

$$\mathscr{L}_{\mathrm{BOS}} = \mathscr{L}_{\mathrm{EH}} + \mathscr{L}_{\mathrm{scal}} + \mathscr{L}_{\mathrm{vect}} \; .$$

We are going to consider a gauged supergravity with a single vector multiplet with FI terms. The bosonic Lagrangian has the general form:

$$\mathscr{L}_{\mathrm{BOS}} = \mathscr{L}_{\mathrm{EH}} + \mathscr{L}_{\mathrm{Scal}} + \mathscr{L}_{\mathrm{vect}} \; .$$

We start from a model featuring 1 complex scalar z, 2 vector field strengths $F^{\Lambda}_{\mu\nu}$ and a non-trivial scalar potential V. The theory is further modified introducing suitable FI terms θ_M .

We are going to consider a gauged supergravity with a single vector multiplet with FI terms. The bosonic Lagrangian has the general form:

$$\mathcal{L}_{\text{BOS}} = \mathcal{L}_{\text{EH}} + \mathcal{L}_{\text{scal}} + \mathcal{L}_{\text{vect}}$$
 .

- We start from a model featuring 1 complex scalar z, 2 vector field strengths $F_{\mu\nu}^{\Lambda}$ and a non-trivial scalar potential V. The theory is further modified introducing suitable FI terms θ_M .
- An embedding of the solution in a supergravity model is important, since many physical aspects of the theory can be better understood.

We are going to consider a gauged supergravity with a single vector multiplet with FI terms. The bosonic Lagrangian has the general form:

$$\mathcal{L}_{BOS} = \mathcal{L}_{EH} + \mathcal{L}_{Scal} + \mathcal{L}_{Vect}$$
.

- An embedding of the solution in a supergravity model is important, since many physical aspects of the theory can be better understood.
- The scalar fields of the theory can be characterized by means of the geometry of the chosen non-linear σ-model.

We are going to consider a gauged supergravity with a single vector multiplet with FI terms. The bosonic Lagrangian has the general form:

$$\mathcal{L}_{BOS} = \mathcal{L}_{EH} + \mathcal{L}_{SCal} + \mathcal{L}_{Vect}$$
.

- $\begin{tabular}{ll} \hline \textbf{0} & We start from a model featuring 1 complex scalar z, 2 vector field strengths $\Gamma^{\Lambda}_{\mu\nu}$ and a non-trivial scalar potential V. The theory is further modified introducing suitable FI terms θ_M.$
- An embedding of the solution in a supergravity model is important, since many physical aspects of the theory can be better understood.
- lacktriangledown The scalar fields of the theory can be characterized by means of the geometry of the chosen non-linear σ -model.
- We consider an explicit solutions in the T^3 model, the latter resulting in a single dilaton truncations of the maximal SO(8) gauged supergravity in D=4.

We restrict to purely magnetic solutions. The action has the explicit form:

$$\mathscr{S} = \frac{1}{8\pi G} \int d^4x \; \sqrt{-g} \left(\frac{R}{2} - \frac{1}{2} \left(\partial \varphi \right)^2 + \frac{3}{L^2} \; \text{cosh} \left(\sqrt{\frac{2}{3}} \, \varphi \right) - \frac{1}{4} \, e^{3\sqrt{\frac{2}{3}} \, \varphi} \left(F^1 \right)^2 - \frac{1}{4} e^{-\sqrt{\frac{2}{3}} \, \varphi} \left(F^2 \right)^2 \right).$$

We restrict to purely magnetic solutions. The action has the explicit form:

$$\mathscr{S} = \frac{1}{8\pi G} \int d^4x \; \sqrt{-g} \left(\frac{R}{2} - \frac{1}{2} \left(\partial \varphi \right)^2 + \frac{3}{L^2} \; \text{cosh} \left(\sqrt{\frac{2}{3}} \, \varphi \right) - \frac{1}{4} \, e^{3\sqrt{\frac{2}{3}} \, \varphi} \, \left(F^1 \right)^2 - \frac{1}{4} \, e^{-\sqrt{\frac{2}{3}} \, \varphi} \, \left(F^2 \right)^2 \right).$$

• We will study this in the context of asymptotically AdS_4 solutions of a truncation of gauged $\mathcal{N}=8$ supergravity, and construct solutions of its T^3 model truncation;

We restrict to purely magnetic solutions. The action has the explicit form:

$$\mathscr{S} = \frac{1}{8\pi G} \int d^4x \; \sqrt{-g} \left(\frac{R}{2} - \frac{1}{2} \left(\partial \varphi \right)^2 + \frac{3}{L^2} \; \text{cosh} \left(\sqrt{\frac{2}{3}} \, \varphi \right) - \frac{1}{4} \, e^{3\sqrt{\frac{2}{3}} \, \varphi} \, \left(F^1 \right)^2 - \frac{1}{4} \, e^{-\sqrt{\frac{2}{3}} \, \varphi} \, \left(F^2 \right)^2 \right).$$

- We will study this in the context of asymptotically AdS_4 solutions of a truncation of gauged $\mathcal{N}=8$ supergravity, and construct solutions of its T^3 model truncation;
- in the model we consider there are two Wilson lines,

$$\Phi_{M}^{1}=\int F^{1},\qquad \Phi_{M}^{2}=\int F^{2},$$

and there is a one-parameter family of values of the Wilson lines which give supersymmetric solitons;

the explicit solution has the schematic form

$$\begin{split} & \varphi \; = \; \pm \ell^{-1} \, \text{In}(x) \,, \qquad F^{\Lambda}_{\mu\nu}(x,\Gamma^{\Lambda}) \,, \\ & ds^2 \; = \; \Upsilon(x) \left(L^2 \, dt^2 - \frac{\eta^2}{f(x)} \, dx^2 - f(x) \, d\psi^2 - L^2 \, dz^2 \right) \,; \end{split}$$

obtained from the old BH configuration by means of the double Wick rotation;

the explicit solution has the schematic form

$$\begin{split} & \varphi \; = \; \pm \ell^{-1} \, \text{In}(x) \,, \qquad F^{\Lambda}_{\mu \nu}(x, \Gamma^{\Lambda}) \,, \\ & ds^2 \; = \; \Upsilon(x) \left(L^2 \, dt^2 - \frac{\eta^2}{f(x)} \, dx^2 - f(x) \, d\psi^2 - L^2 \, dz^2 \right) \,; \end{split}$$

obtained from the old BH configuration by means of the double Wick rotation;

for special boundary conditions, can be found both susy and non-susy solutions

the explicit solution has the schematic form

$$\begin{split} & \varphi \; = \; \pm \ell^{-1} \, \text{In}(x) \,, \qquad F^{\Lambda}_{\mu\nu}(x,\Gamma^{\Lambda}) \,, \\ & ds^2 \; = \; \Upsilon(x) \left(L^2 \, dt^2 - \frac{\eta^2}{f(x)} \, dx^2 - f(x) \, d\psi^2 - L^2 \, dz^2 \right) \,; \end{split}$$

obtained from the old BH configuration by means of the double Wick rotation;

for special boundary conditions, can be found both susy and non-susy solutions
 new kind of degeneracy of supersymmetric solutions;

the explicit solution has the schematic form

$$\begin{split} & \varphi \; = \; \pm \ell^{-1} \, \text{In}(x) \, , \qquad F^{\Lambda}_{\mu \nu}(x, \Gamma^{\Lambda}) \, , \\ & ds^2 \; = \; \Upsilon(x) \left(L^2 \, dt^2 - \frac{\eta^2}{f(x)} \, dx^2 - f(x) \, d\psi^2 - L^2 \, dz^2 \right) \, ; \end{split}$$

obtained from the old BH configuration by means of the double Wick rotation;

- for special boundary conditions, can be found both susy and non-susy solutions
 - \implies new kind of degeneracy of supersymmetric solutions;
 - surprisingly, there is a family of non-susy solutions of lower energy and free energy than the susy ones.

The model Thermodynamics, boundary conditions

The model Thermodynamics, boundary conditions

The metric solution can represent different spacetimes, one for $x \in (0,1)$ and the other for $x \in (1,\infty)$.

The model Thermodynamics, boundary conditions

The metric solution can represent different spacetimes, one for $x \in (0,1)$ and the other for $x \in (1,\infty)$.

ullet After a suitable change of coordinate x=x(r), the soliton energy parameter μ can be then read-off from the asymptotic expansion of the metric:

$$g_{\phi\phi} = \frac{r^2}{L^2} - \frac{\mu}{r} + O(r^{-2})$$
,

The metric solution can represent different spacetimes, one for $x \in (0,1)$ and the other for $x \in (1,\infty)$.

• After a suitable change of coordinate x=x(r), the soliton energy parameter μ can be then read-off from the asymptotic expansion of the metric:

$$g_{\phi\phi} = \frac{r^2}{L^2} - \frac{\mu}{r} + O(r^{-2})\,, \qquad \quad \mu = \mp \frac{4\,L^2}{3\eta} \left(3\,Q_1^2 - Q_2^2\right)\,; \label{eq:gphi}$$

The metric solution can represent different spacetimes, one for $x \in (0,1)$ and the other for $x \in (1,\infty)$.

• After a suitable change of coordinate x=x(r), the soliton energy parameter μ can be then read-off from the asymptotic expansion of the metric:

$$g_{\,\phi\,\phi} = \frac{r^2}{L^2} - \frac{\mu}{r} + O(r^{-2})\,, \qquad \quad \mu = \mp \frac{4\,L^2}{3\eta} \left(3\,Q_1^2 - Q_2^2\right)\,; \label{eq:phiphi}$$

• We are interested in soliton solutions where the circle contracts in the interior of the geometry at some position x_0 where $f(x_0) = 0$;

The metric solution can represent different spacetimes, one for $x \in (0,1)$ and the other for $x \in (1,\infty)$.

• After a suitable change of coordinate x=x(r), the soliton energy parameter μ can be then read-off from the asymptotic expansion of the metric:

$$g_{\,\phi\,\phi} = \frac{r^2}{L^2} - \frac{\mu}{r} + O(r^{-2})\,, \qquad \quad \mu = \mp \frac{4\,L^2}{3\eta} \left(3\,Q_1^2 - Q_2^2\right)\,; \label{eq:gphi}$$

- We are interested in soliton solutions where the circle contracts in the interior of the geometry at some position x_0 where $f(x_0) = 0$;
- Regularity of the metric at $x=x_0$ requires $\phi \in [0,\Delta]$ where

$$\Delta^{-1} = \left| \frac{1}{4\pi\eta} \frac{\mathrm{df}}{\mathrm{dx}} \right|_{x=x_0} ;$$

Solutions with non-zero charges have net magnetic fluxes at infinit

$$\begin{split} &\Phi_\text{M}^1 = \int F^1 = \oint A^1 = Q_1 \, \Delta \left(1 - \kappa_0^{-2}\right) \equiv 2\pi L \, \psi_1 \text{,} \\ &\Phi_\text{M}^2 = \int F^2 = \oint A^2 = Q_2 \, \Delta \left(1 - \kappa_0^2\right) \equiv 2\pi L \, \psi_2 \, . \end{split} \label{eq:phi_M}$$

Solutions with non-zero charges have net magnetic fluxes at infinit

$$\begin{split} &\Phi_\text{M}^1 = \int F^1 = \oint A^1 = \,Q_1 \,\Delta \left(1-x_0^{-2}\right) \equiv 2\pi L\,\psi_1\text{,}\\ &\Phi_\text{M}^2 = \int F^2 = \oint A^2 = \,Q_2 \,\Delta \left(1-x_0^2\right) \equiv 2\pi L\,\psi_2\,. \end{split}$$

The scalar field induces a vev of an operator in the dual theory,

$$\left\langle \mathfrak{O}\right\rangle =\varphi_{0}=\pm\frac{\sqrt{6}}{2}\;\frac{\pi\,x_{0}\left|\psi_{1}^{2}\left(1+2\,x_{0}^{2}\right)-\psi_{2}^{2}\right|}{\Delta}\;.\label{eq:eq:energy_energy}$$

Solutions with non-zero charges have net magnetic fluxes at infinit

$$\begin{split} &\Phi_\text{M}^1 = \int F^1 = \oint A^1 = Q_1 \Delta \left(1-x_0^{-2}\right) \equiv 2\pi L \, \psi_1\text{,} \\ &\Phi_\text{M}^2 = \int F^2 = \oint A^2 = Q_2 \, \Delta \left(1-x_0^2\right) \equiv 2\pi L \, \psi_2 \,. \end{split} \label{eq:phi_M}$$

The scalar field induces a vev of an operator in the dual theory,

$$\left\langle \mathfrak{O}\right\rangle =\varphi_{0}=\pm\frac{\sqrt{6}}{2}\,\frac{\pi\,x_{0}\left|\psi_{1}^{2}\left(1+2\,x_{0}^{2}\right)-\psi_{2}^{2}\right|}{\Delta}\,.\label{eq:eq:energy_energy}$$

 From the boundary point of view, it is natural to parameterize solutions in terms of the boundary data we hold fixed:

Solutions with non-zero charges have net magnetic fluxes at infinit

$$\begin{split} &\Phi_\text{M}^1 = \int F^1 = \oint A^1 = \,Q_1 \,\Delta \left(1-x_0^{-2}\right) \equiv 2\pi L\,\psi_1\text{,}\\ &\Phi_\text{M}^2 = \int F^2 = \oint A^2 = \,Q_2 \,\Delta \left(1-x_0^2\right) \equiv 2\pi L\,\psi_2\,. \end{split}$$

The scalar field induces a vev of an operator in the dual theory,

$$\left\langle \mathfrak{O}\right\rangle =\varphi_{0}=\pm\frac{\sqrt{6}}{2}\,\frac{\pi\,x_{0}\left|\psi_{1}^{2}\left(1+2\,x_{0}^{2}\right)-\psi_{2}^{2}\right|}{\Delta}\,.\label{eq:eq:energy_energy}$$

- From the boundary point of view, it is natural to parameterize solutions in terms of the boundary data we hold fixed:
 - fixed fluxes, holding fixed $\psi_1, \psi_2 \Rightarrow 0$ to 2 sols;

Solutions with non-zero charges have net magnetic fluxes at infinit

$$\begin{split} &\Phi_\text{M}^1 = \int F^1 = \oint A^1 = \,Q_1 \,\Delta \left(1-x_0^{-2}\right) \equiv 2\pi L\,\psi_1\text{,}\\ &\Phi_\text{M}^2 = \int F^2 = \oint A^2 = \,Q_2 \,\Delta \left(1-x_0^2\right) \equiv 2\pi L\,\psi_2\,. \end{split}$$

The scalar field induces a vev of an operator in the dual theory,

$$\left\langle \mathfrak{O}\right\rangle =\varphi_{0}=\pm\frac{\sqrt{6}}{2}\,\frac{\pi\,x_{0}\left|\psi_{1}^{2}\left(1+2\,x_{0}^{2}\right)-\psi_{2}^{2}\right|}{\Delta}\,.\label{eq:eq:energy_energy}$$

- From the boundary point of view, it is natural to parameterize solutions in terms of the boundary data we hold fixed:
 - fixed fluxes, holding fixed $\psi_1, \psi_2 \Rightarrow 0$ to 2 sols;
 - fixed charges, holding fixed Q_1 , $Q_2 \Rightarrow 0$ to 4 sols.

It is possible to find soliton configurations preserving part of the supersymmetry in our truncation of the maximal supergravity theory when

$$Q_1 = -\frac{1}{\sqrt{3}} \, Q_2 \, .$$

It is possible to find soliton configurations preserving part of the supersymmetry in our truncation of the maximal supergravity theory when

$$Q_1 = -\frac{1}{\sqrt{3}} Q_2$$
.

 the above formulae are found imposing the vanishing of SUSY variations (Killing spinor equations);

It is possible to find soliton configurations preserving part of the supersymmetry in our truncation of the maximal supergravity theory when

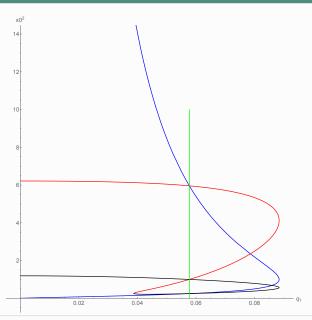
$$Q_1 = -\frac{1}{\sqrt{3}} Q_2$$
.

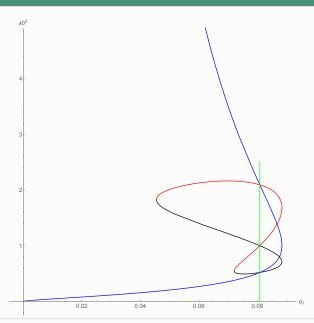
- the above formulae are found imposing the vanishing of SUSY variations (Killing spinor equations);
- for fixed charge boundary conditions there are 2 distinct susy soliton configurations (degeneracy of supersymmetric solutions);

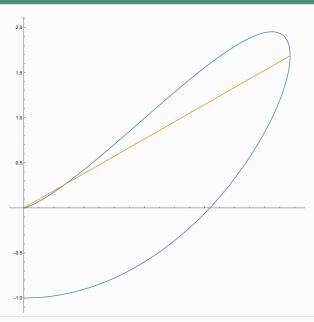
It is possible to find soliton configurations preserving part of the supersymmetry in our truncation of the maximal supergravity theory when

$$Q_1 = -\frac{1}{\sqrt{3}} Q_2$$
.

- the above formulae are found imposing the vanishing of SUSY variations (Killing spinor equations);
- for fixed charge boundary conditions there are 2 distinct susy soliton configurations (degeneracy of supersymmetric solutions);
- for the same fixed charge boundary conditions, surprisingly a family of non-susy solutions of lower energy and free energy than the supersymmetric ones can be found.







We studied some soliton configuration in a gauged supergravity framework, constructing solutions of its T³ model truncation.

- We studied some soliton configuration in a gauged supergravity framework, constructing solutions of its T³ model truncation.
- In the model under consideration there are two Wilson lines, with a one-parameter family of the latter which give supersymmetric solitons.

- We studied some soliton configuration in a gauged supergravity framework, constructing solutions of its T³ model truncation.
- In the model under consideration there are two Wilson lines, with a one-parameter family of the latter which give supersymmetric solitons.
- For supersymmetry-preserving fixed charge boundary conditions there are two distinct soliton solutions.

- We studied some soliton configuration in a gauged supergravity framework, constructing solutions of its T³ model truncation.
- In the model under consideration there are two Wilson lines, with a one-parameter family of the latter which give supersymmetric solitons.
- For supersymmetry-preserving fixed charge boundary conditions there are two distinct soliton solutions.
- The new solutions require a more in-depth study of the degeneracy of the susy configurations in the presence of generic boundary conditions.

- We studied some soliton configuration in a gauged supergravity framework, constructing solutions of its T³ model truncation.
- In the model under consideration there are two Wilson lines, with a one-parameter family of the latter which give supersymmetric solitons.
- For supersymmetry-preserving fixed charge boundary conditions there are two distinct soliton solutions.
- The new solutions require a more in-depth study of the degeneracy of the susy configurations in the presence of generic boundary conditions.
- One branch of susy solutions has higher energy than a non-susy one with the same boundary conditions.

Thank you for listening!