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Lagrangian of Gross-Neveu model 4

Lagrangian of Gross-Neveu model

L = ψkγ
νi∂νψk +

G

2N

(
ψkψk

)2
k = 1, ..., N is a number of flavours

It exhibits chiral symmetry breaking and
dynamical mass generation



Chiral symmetry 5

Note that the definition of chiral symmetry

is slightly unusual in (2+1)-dimensions.

There exists no other 2× 2 matrix anticommuting with the
gamma matrices, which would allow the introduction of a
γ5-matrix in the irreducible representation.



Chiral symmetry 6

The concept of chiral symmetries and their breakdown by
mass terms can nevertheless be realized also in the framework
of (2+1)-dimensional quantum field theories

by considering a four-component reducible representation
for Dirac fields

The Dirac spinors ψ have the following form:

ψ(x) =

(
ψ̃1(x)

ψ̃2(x)

)
,

with ψ̃1, ψ̃2 being two-component spinors.
4×4 γ-matrices:

γµ = diag(γ̃µ,−γ̃µ)



Chiral symmetry: γ3, γ5 and τ 7

There exist two matrices, γ3 and γ5, which anticommute with
all γµ (µ = 0, 1, 2) and with themselves

γ3 =

(
0 , I
I , 0

)
, γ5 = γ0γ1γ2γ3 = i

(
0 , −I
I , 0

)

One can also construct

τ = −iγ3γ5 =
(
I , 0
0 , −I

)



Chiral symmetry 8

The Lagrangian is invariant under two discrete chiral
transformations Γ5 and Γ3,

Γ5 : ψk(t, x, y) → γ5ψk(t, x, y); ψk(t, x, y) → −ψk(t, x, y)γ
5

Γ3 : ψk(t, x, y) → γ3ψk(t, x, y); ψk(t, x, y) → −ψk(t, x, y)γ
3



P transformation 9

ψP(x′) ≡ ψP(t,−x, y) = γ5γ1ψ(t, x, y)

ψP(x′) ≡ ψP(t,−x, y) = ψ(t, x, y)γ5γ1

P transformations of some Hermitian bispinor forms such as

ψ(x)iγ5ψ(x)
P−→ −ψ(x)iγ5ψ(x),

ψ(x)iγ3γ5ψ(x)
P−→ −ψ(x)iγ3γ5ψ(x),

ψ(x)iγ3ψ(x)
P−→ ψ(x)iγ3ψ(x).



T transformation 10

ψT (x′) ≡ ψT (−t, x, y) = γ5γ2ψ(t, x, y)

ψT (x′) ≡ ψT (−t, x, y) = ψ(t, x, y)γ5γ2

T transformations of some other Hermitian bispinor forms

ψ(x)iγ3ψ(x)
T−→ −ψ(x)iγ3ψ(x)

ψ(x)iγ5ψ(x)
T−→ −ψ(x)iγ5ψ(x)

ψ(x)iγ3γ5ψ(x)
T−→ −ψ(x)iγ3γ5ψ(x)



Bilocal source for ψψ composite operators 11

As a rule one introduces the source terms

Ss =

∫
d3x

(
ψk(x)Jk(x) + Jk(x)ψk(y)

)

But now let us introduce bilocal source

Ss =

∫
d3xd3yψ

α
k (x)K

β
α(x, y)ψkβ(y)



Generating functional 12

Z(K) is the generating functional of the Green’s functions of
bilocal fermion-antifermion composite operators ψ

α
k (x)ψkβ(y)

Z(K) ≡ exp(iNW (K)) =

=

∫
DψkDψk exp

(
i
[
I(ψ,ψ)+

∫
d3xd3yψ

α
k (x)K

β
α(x, y)ψkβ(y)

])

where α, β = 1, 2, 3, 4 are spinor indices,
Kβ

α(x, y) is a bilocal source of the fermion bilinear composite field
ψ̄α
k (x)ψkβ(y)

I(ψ,ψ) =

∫
d3xd3yψ

α

k (x)D
β
α(x, y)ψkβ(y) + Iint(ψ

α

kψkβ)



Generating functional 13

Generating functional can be expressed in the following form

Z(K) = exp
(
iIint

(
− i

δ

δK

))
exp

[
NTr ln

(
D(x, y) +K(x, y)

)]



Generating functional 14

Z(K) = exp(iNW (K))

exp(iNW (K)) =

= exp
(
iIint

(
− i

δ

δK

))
exp

[
NTr ln

(
D(x, y) +K(x, y)

)]



CJT effective action 15

CJT effective action of the composite bilocal and bispinor
operator ψ̄α

k (x)ψkβ(y) is defined as a functional Γ(S) of the full
fermion propagator Sα

β (x, y) by Legendre transformation
of the functional W (K)

Γ(S) =W (K)−
∫
d3xd3ySα

β (x, y)K
β
α(y, x),

Sα
β (x, y) =

δW (K)

δKβ
α(y, x)

.



Full fermion propagator 16

S(x, y) is the full fermion propagator at K(x, y) = 0

One can show for CJT effective action Γ(S)

δΓ(S)

δSα
β (x, y)

= −Kβ
α(y, x)

If bilocal sources Kβ
α(y, x) are zero, the full fermion propagator

is a solution of
δΓ(S)

δSα
β (x, y)

= 0.



CJT effective action 17

we calculate the effective action pertubatively

Γ(S) = −iTr ln
(
− iS−1

)
+

∫
d3xd3ySα

β (x, y)D
β
α(y, x)

+
G

2

∫
d3x

[
trS(x, x)

]2
− G

2N

∫
d3x tr

[
S(x, x)S(x, x)

]
.



Stationary equation for the CJT effective action 18

The stationary equation for the CJT effective action

0 = i
[
S−1

]β
α
(x, y)+Dβ

α(x, y)+Gδ
β
αδ(x−y) trS(x, y)−

G

N
Sβ
α(x, y)δ(x−y).

S(x, y) is a translationary invariant operator

(S−1)βα(p)−ipν(γν)βα = iGδβα

∫
d3q

(2π)3
trS(q)−i G

N

∫
d3q

(2π)3
Sβ
α(q)



Dirac mass term generation 19

Let us explore, using the CJT approach, the possibility of mass
term

S−1 = i(p̂+mD), i.e. S = −i p̂+mD

p2 −m2
D

P - symmetric T - symmetric

Break chiral symmetries Γ5 and Γ3



gap equations 20

The gap equation

mD

G
= mD

(
4− 1

N

) 1

(2π)3

∫
d3p

p2 +m2
D



coupling constant renormalization 21

UV divergence can be removed from the gap equations if we
require the following behavior of the bare coupling constant
G ≡ G(Λ) vs Λ

1

G(Λ)
=

4N − 1

2Nπ2

(
Λ + gD

π

2
+ gDO

(gD
Λ

))

where gD is a finite Λ-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model.



Dynamical mass generation 22

mD (gD + |mD|) = 0

▶ at gD > 0 its global minimum lies at the point mD = 0,
and no dynamical mass generation

▶ at gD < 0 the global minimum is achieved at mD = |gD|

mD = |gD|



Renormalization group equation 23

One could define dimensionless bare coupling constant

λ = ΛG(Λ)

The β-function is

β(Λ) = Λ
∂λ(Λ)

∂Λ
, β(Λ) =

λ

λD
(λD − λ)

where λD = 2Nπ2

4N−1

there exists a nonzero UV-stable fixed point λD in
the model



Renormalization group equation 24

At rather large values of Λ

λ(Λ)− λD ∼ −gD
Λ

▶ at λ > λD — chiral symmetry is broken

▶ at λ < λD — symmetry of the model remains intact



Haldane mass term generation 25

Let us explore, using the CJT approach, the possibility of mass
term

S−1 = i(p̂+ τmH), i.e. S = −i p̂+ τmH

p2 −m2
H

P - breaking T - symmetric

Keep chiral symmetries Γ5 and Γ3 intact



Coupling constant renormalization 26

the UV divergence can be removed from the gap equations if we
require the following behavior of the bare coupling constant
G ≡ G(Λ) vs Λ

1

G(Λ)
= − 1

2Nπ2

(
Λ + gH

π

2
+ gHO

(gH
Λ

))

where gH is a finite Λ-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model.



Dynamical generation of Haldane mass 27

mH (gH + |mH |) = 0

▶ at gH > 0 its global minimum lies at the point mH = 0,
and no dynamical generation of Haldane mass

▶ at gH < 0 the global minimum is achieved at mH = |gH |

mH = |gH |



Renormalization group equation 28

At rather large values of Λ

λ(Λ)− λH ∼ 2π2NgH
Λ

where λH = −2Nπ2

▶ at λ > λH — parity remains intact

▶ at λ < λH — parity is broken



Renormalization group equation 29

λ < λH — parity is broken

Since λH → −∞ at N → ∞

we may conclude that in the limit of large N the (2+1)-D
GN model cannot have a P-odd phase and Haldane mass
cannot arise dynamically



More exotic mass terms 30

Let us explore the possibility that the solution of the gap
equation has the form

S−1 = i(p̂+ iγ5m5 + iγ3m3), i.e. S = −i p̂+ iγ5m5 + iγ3m3

p2 − (m2
3 +m2

5)

It corresponds to a dynamically generated mass term of the
form MH =

(
m5ψiγ

5ψ +m3ψiγ
3ψ

)
in the Lagrangian

Since m5 and m3 are some real numbers, this mass term is a
Hermitian one.



the UV divergence can be removed from the gap equations if we
require the following behavior of the bare coupling constant
G ≡ G(Λ) vs Λ

1

G(Λ)
=

1

2Nπ2

(
Λ + g

π

2
+ gO

( g
Λ

))

where g is a finite Λ-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model.



Dynamical generation of masses m3 and m5 32

▶ at g > 0 only a trivial solution of the gap equations exists,
m3 = m5 = 0, and all discrete symmetries of the model
remain intact

▶ at g < 0
m3 = |g| cosα,m5 = |g| sinα

(where 0 ≤ α ≤ π/2 is some arbitrary fixed angle)



Vacuum solution 33

At g < 0 the system undergoes dynamic generation of the
masses

m3 = |g| cosα, m5 = |g| sinα

if α ̸= 0, π/2 violation of all discrete symmetries is realized in
the model.

if α = 0 then only -odd m3 = |g| mass term is generated, and Γ3

chiral symmetry is dynamically violated.

if α = π/2 only -even m5 = |g| mass term appears dynamically,
and in this case chiral Γ5 symmetry is broken spontaneously.



Physical fermion mass 34

At g < 0 in all above mentioned cases (at arbitrary values of the
angle parameter α)
the genuine physical fermion mass, which is indeed a pole of the
fermion propagator, is equal to

MF =
√
m2

3 +m2
5 ≡ |g|



Renormalization group equation 35

At rather large values of Λ

λ(Λ)− λ35 ∼
2π2Ng

Λ

▶ at λ > λ35 — m5ψiγ
5ψ +m3ψiγ

3ψ mass term is
dynamically generated

▶ at λ < λ35 — symmetric phase



Renormalization group equation 36

at λ > λ35 — m5ψiγ
5ψ +m3ψiγ

3ψ mass term is
dynamically generated

where λ35 = 2Nπ2

Since λ35 → ∞ at N → ∞

we may conclude that in the limit of large N there is no
dynamical m5ψiγ

5ψ +m3ψiγ
3ψ mass term generation



More exotic masses: non-Hermitian mass terms 37

MH = im5ψ(x)γ
5ψ(x) + im3ψ(x)γ

3ψ(x)

MNH1 = im5ψ(x)γ
5ψ(x) +m3ψ(x)γ

3ψ(x)

PT - symmetric

MNH2 = m5ψ(x)γ
5ψ(x) + im3ψ(x)γ

3ψ(x)

PT - breaking



non-Hermitian mass term 38

Let us explore, using the CJT approach, the possibility of the
dynamic appearance of a non-Hermitian and PT symmetric
mass term MNH1

S−1 = i(p̂+ iγ5m5 + γ3m3), i.e. S = −i p̂+ iγ5m5 + γ3m3

p2 − (m2
5 −m2

3)

where m3 and m5 are real quantities.

Suppose that m2
5 ≥ m2

3



Vacuum solution 39

▶ at g > 0 its global minimum lies at the point m5 = m3 = 0,
and dynamical mass generation is absent

▶ at g < 0 the global minimum is achieved at arbitrary
(m3,m5) point such that m2

5 −m2
3 = g2

m3 = |g| sinhβ, m5 = |g| coshβ

Note that such a structure of the global minimum point of the
model appears due to the emergent symmetry of the CJT
effective potential with respect to non-Unitary transformations(

m5

m3

)
→

(
coshβ sinhβ
sinhβ coshβ

)(
m5

m3

)
.



non-Hermitian mass term 40

the non-Hermitian but -odd mass term MNH2

S−1 = i(p̂+ γ5m5 + iγ3m3), i.e. S = −i p̂+ γ5m5 + iγ3m3

p2 − (m2
3 −m2

5)

where m3 and m5 are real quantities.

Suppose that m2
5 ≥ m2

3



non-Hermitian mass term 41

It can be shown in exactly the same way that for the same
dependence of the bare coupling constant G vs Λ, there exists a
nontrivial solution of the renormalized stationary
(Dyson-Schwinger) equation

▶ at g < 0 of the non-Hermitian but PT -odd mass term
MNH2 in the model.

m3 = |g| coshω, m5 = |g| sinhω√
m2

3 −m2
5 ≡ |g|

fermion pole mass MF =
√
m2

3 −m2
5 ≡ |g|.



Renormalization group equation 42

At rather large values of Λ

λ(Λ)− λ35 ∼ −2π2Ng

Λ

▶ at λ > λ35 — non-Hermitian mass term could be
dynamically generated

▶ at λ < λ35 — no non-Hermitian mass terms is
dynamically generated



Renormalization group equation 43

at λ > λ35 — non-Hermitian mass terms could be
dynamically generated

where λ35 = 2Nπ2

Since λ35 → ∞ at N → ∞

we may conclude that in the limit of large N there is no
dynamical generation of non-Hermitian mass terms



Conclusions and Thanks for the Attention 44

▶ There has been studied the possibility of the dynamical
appearance of both Hermitian and non-Hermitian mass
terms in the originally Hermitian massless
(2+1)-dimensional GN model

▶ the effect of spontaneous non-Hermiticity can be detected
only outside the large-N expansion technique

▶ There has been shown that parity breaking Haldane mass
can be generated dynamically in the model


