Cornwall-Jackiw-Tomboulis effective action in

 (2+1)-dimensional models

Roman N. Zhokhov

IZMIRAN, IHEP

6th International Conference on Particle Physics and Astrophysics

Russian
Science Foundation

Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP

T.G. Khunjua, University of Georgia, MSU
details can be found in
Phys.Rev.D 106 (2022) 8, 085002 arXiv:2208.11735 [hep-th]
Phys.Rev.D 105 (2022) 2, 025014 arXiv: 2112.13012 [hep-th]
Int.J.Mod.Phys.A 36 (2021) 31n32, 2150231

The work is supported by

- Russian Science Foundation (RSF)
under grant number 19-72-00077

$$
\text { Pr|ll} \begin{aligned}
& \text { Russian } \\
& \text { Science } \\
& \text { Foundation }
\end{aligned}
$$

- Foundation for the Advancement of Theoretical Physics and Mathematics

Lagrangian of Gross-Neveu model

$$
L=\bar{\psi}_{k} \gamma^{\nu} i \partial_{\nu} \psi_{k}+\frac{G}{2 N}\left(\bar{\psi}_{k} \psi_{k}\right)^{2}
$$

$k=1, \ldots, N$ is a number of flavours

It exhibits chiral symmetry breaking and dynamical mass generation

Note that the definition of chiral symmetry is slightly unusual in ($2+1$)-dimensions.

There exists no other 2×2 matrix anticommuting with the gamma matrices, which would allow the introduction of a γ^{5}-matrix in the irreducible representation.

The concept of chiral symmetries and their breakdown by mass terms can nevertheless be realized also in the framework of $(2+1)$-dimensional quantum field theories
by considering a four-component reducible representation for Dirac fields

The Dirac spinors ψ have the following form:

$$
\psi(x)=\binom{\tilde{\psi}_{1}(x)}{\tilde{\psi}_{2}(x)},
$$

with $\tilde{\psi}_{1}, \tilde{\psi}_{2}$ being two-component spinors. $4 \times 4 \gamma$-matrices:

$$
\gamma^{\mu}=\operatorname{diag}\left(\tilde{\gamma}^{\mu},-\tilde{\gamma}^{\mu}\right)
$$

Chiral symmetry: γ^{3}, γ^{5} and τ

There exist two matrices, γ^{3} and γ^{5}, which anticommute with all $\gamma^{\mu} \quad(\mu=0,1,2)$ and with themselves

$$
\gamma^{3}=\left(\begin{array}{cc}
0, & I \\
I, & 0
\end{array}\right), \quad \gamma^{5}=\gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=i\left(\begin{array}{cc}
0, & -I \\
I, & 0
\end{array}\right)
$$

One can also construct

$$
\tau=-i \gamma^{3} \gamma^{5}=\left(\begin{array}{cc}
I, & 0 \\
0, & -I
\end{array}\right)
$$

Chiral symmetry

The Lagrangian is invariant under two discrete chiral transformations Γ^{5} and Γ^{3},

$$
\Gamma^{5}: \quad \psi_{k}(t, x, y) \rightarrow \gamma^{5} \psi_{k}(t, x, y) ; \quad \bar{\psi}_{k}(t, x, y) \rightarrow-\bar{\psi}_{k}(t, x, y) \gamma^{5}
$$

$\Gamma^{3}: \quad \psi_{k}(t, x, y) \rightarrow \gamma^{3} \psi_{k}(t, x, y) ; \quad \bar{\psi}_{k}(t, x, y) \rightarrow-\bar{\psi}_{k}(t, x, y) \gamma^{3}$

$$
\begin{aligned}
& \psi^{\mathcal{P}}\left(x^{\prime}\right) \equiv \psi^{\mathcal{P}}(t,-x, y)=\gamma^{5} \gamma^{1} \psi(t, x, y) \\
& \overline{\psi^{\mathcal{P}}}\left(x^{\prime}\right) \equiv \overline{\psi^{\mathcal{P}}}(t,-x, y)=\bar{\psi}(t, x, y) \gamma^{5} \gamma^{1}
\end{aligned}
$$

\mathcal{P} transformations of some Hermitian bispinor forms such as

$$
\begin{aligned}
& \bar{\psi}(x) i \gamma^{5} \psi(x) \xrightarrow{\mathcal{P}}-\bar{\psi}(x) i \gamma^{5} \psi(x), \\
& \bar{\psi}(x) i \gamma^{3} \gamma^{5} \psi(x) \xrightarrow{\mathcal{P}}-\bar{\psi}(x) i \gamma^{3} \gamma^{5} \psi(x), \\
& \bar{\psi}(x) i \gamma^{3} \psi(x) \xrightarrow{\mathcal{P}} \bar{\psi}(x) i \gamma^{3} \psi(x) .
\end{aligned}
$$

$$
\begin{aligned}
& \psi^{\mathcal{T}}\left(x^{\prime}\right) \equiv \psi^{\mathcal{T}}(-t, x, y)=\gamma^{5} \gamma^{2} \psi(t, x, y) \\
& \overline{\psi^{\mathcal{T}}}\left(x^{\prime}\right) \equiv \overline{\psi^{\mathcal{T}}}(-t, x, y)=\bar{\psi}(t, x, y) \gamma^{5} \gamma^{2}
\end{aligned}
$$

\mathcal{T} transformations of some other Hermitian bispinor forms

$$
\begin{aligned}
& \bar{\psi}(x) i \gamma^{3} \psi(x) \xrightarrow{\mathcal{T}}-\bar{\psi}(x) i \gamma^{3} \psi(x) \\
& \bar{\psi}(x) i \gamma^{5} \psi(x) \xrightarrow{\mathcal{T}}-\bar{\psi}(x) i \gamma^{5} \psi(x) \\
& \bar{\psi}(x) i \gamma^{3} \gamma^{5} \psi(x) \xrightarrow{\mathcal{T}}-\bar{\psi}(x) i \gamma^{3} \gamma^{5} \psi(x)
\end{aligned}
$$

As a rule one introduces the source terms

$$
\mathcal{S}_{s}=\int d^{3} x\left(\bar{\psi}_{k}(x) J_{k}(x)+\bar{J}_{k}(x) \psi_{k}(y)\right)
$$

But now let us introduce bilocal source

$$
\mathcal{S}_{s}=\int d^{3} x d^{3} y \bar{\psi}_{k}^{\alpha}(x) K_{\alpha}^{\beta}(x, y) \psi_{k \beta}(y)
$$

$Z(K)$ is the generating functional of the Green's functions of bilocal fermion-antifermion composite operators $\bar{\psi}_{k}^{\alpha}(x) \psi_{k \beta}(y)$

$$
\begin{gathered}
Z(K) \equiv \exp (i N W(K))= \\
=\int \mathcal{D} \bar{\psi}_{k} \mathcal{D} \psi_{k} \exp \left(i\left[I(\bar{\psi}, \psi)+\int d^{3} x d^{3} y \bar{\psi}_{k}^{\alpha}(x) K_{\alpha}^{\beta}(x, y) \psi_{k \beta}(y)\right]\right)
\end{gathered}
$$

where $\alpha, \beta=1,2,3,4$ are spinor indices, $K_{\alpha}^{\beta}(x, y)$ is a bilocal source of the fermion bilinear composite field $\bar{\psi}_{k}^{\alpha}(x) \psi_{k \beta}(y)$

$$
I(\bar{\psi}, \psi)=\int d^{3} x d^{3} y \bar{\psi}_{k}^{\alpha}(x) D_{\alpha}^{\beta}(x, y) \psi_{k \beta}(y)+I_{i n t}\left(\bar{\psi}_{k}^{\alpha} \psi_{k \beta}\right)
$$

Generating functional

Generating functional can be expressed in the following form

$$
Z(K)=\exp \left(i I_{i n t}\left(-i \frac{\delta}{\delta K}\right)\right) \exp [N \operatorname{Tr} \ln (D(x, y)+K(x, y))]
$$

Generating functional

$$
Z(K)=\exp (i N W(K))
$$

$$
\exp (i N W(K))=
$$

$$
=\exp \left(i I_{\text {int }}\left(-i \frac{\delta}{\delta K}\right)\right) \exp [N \operatorname{Tr} \ln (D(x, y)+K(x, y))]
$$

CJT effective action of the composite bilocal and bispinor operator $\bar{\psi}_{k}^{\alpha}(x) \psi_{k \beta}(y)$ is defined as a functional $\Gamma(S)$ of the full fermion propagator $S_{\beta}^{\alpha}(x, y)$ by Legendre transformation of the functional $W(K)$

$$
\begin{gathered}
\Gamma(S)=W(K)-\int d^{3} x d^{3} y S_{\beta}^{\alpha}(x, y) K_{\alpha}^{\beta}(y, x) \\
S_{\beta}^{\alpha}(x, y)=\frac{\delta W(K)}{\delta K_{\alpha}^{\beta}(y, x)} .
\end{gathered}
$$

$S(x, y)$ is the full fermion propagator at $K(x, y)=0$

One can show for CJT effective action $\Gamma(S)$

$$
\frac{\delta \Gamma(S)}{\delta S_{\beta}^{\alpha}(x, y)}=-K_{\alpha}^{\beta}(y, x)
$$

If bilocal sources $K_{\alpha}^{\beta}(y, x)$ are zero, the full fermion propagator is a solution of

$$
\frac{\delta \Gamma(S)}{\delta S_{\beta}^{\alpha}(x, y)}=0
$$

we calculate the effective action pertubatively

$$
\begin{aligned}
& \Gamma(S)=-i \operatorname{Tr} \ln \left(-i S^{-1}\right)+\int d^{3} x d^{3} y S_{\beta}^{\alpha}(x, y) D_{\alpha}^{\beta}(y, x) \\
& +\frac{G}{2} \int d^{3} x[\operatorname{tr} S(x, x)]^{2}-\frac{G}{2 N} \int d^{3} x \operatorname{tr}[S(x, x) S(x, x)]
\end{aligned}
$$

The stationary equation for the CJT effective action

$$
0=i\left[S^{-1}\right]_{\alpha}^{\beta}(x, y)+D_{\alpha}^{\beta}(x, y)+G \delta_{\alpha}^{\beta} \delta(x-y) \operatorname{tr} S(x, y)-\frac{G}{N} S_{\alpha}^{\beta}(x, y) \delta(x-y)
$$

$S(x, y)$ is a translationary invariant operator
$\overline{\left(S^{-1}\right)_{\alpha}^{\beta}}(p)-i p_{\nu}\left(\gamma^{\nu}\right)_{\alpha}^{\beta}=i G \delta_{\alpha}^{\beta} \int \frac{d^{3} q}{(2 \pi)^{3}} \operatorname{tr} \bar{S}(q)-i \frac{G}{N} \int \frac{d^{3} q}{(2 \pi)^{3}} \overline{S_{\alpha}^{\beta}}(q)$

Let us explore, using the CJT approach, the possibility of mass term

$$
\overline{S^{-1}}=i\left(\hat{p}+m_{D}\right), \quad \text { i.e. } \quad \bar{S}=-i \frac{\hat{p}+m_{D}}{p^{2}-m_{D}^{2}}
$$

\mathcal{P} - symmetric
\mathcal{T} - symmetric
Break chiral symmetries Γ^{5} and Γ^{3}

The gap equation

$$
\frac{m_{D}}{G}=m_{D}\left(4-\frac{1}{N}\right) \frac{1}{(2 \pi)^{3}} \int \frac{d^{3} p}{p^{2}+m_{D}^{2}}
$$

UV divergence can be removed from the gap equations if we require the following behavior of the bare coupling constant $G \equiv G(\Lambda)$ vs Λ

$$
\frac{1}{G(\Lambda)}=\frac{4 N-1}{2 N \pi^{2}}\left(\Lambda+g_{D} \frac{\pi}{2}+g_{D} \mathcal{O}\left(\frac{g_{D}}{\Lambda}\right)\right)
$$

where g_{D} is a finite Λ-independent and renormalization group invariant quantity, and it can also be considered as a new free parameter of the model.

$$
m_{D}\left(g_{D}+\left|m_{D}\right|\right)=0
$$

- at $g_{D}>0$ its global minimum lies at the point $m_{D}=0$, and no dynamical mass generation
- at $g_{D}<0$ the global minimum is achieved at $m_{D}=\left|g_{D}\right|$

$$
m_{D}=\left|g_{D}\right|
$$

One could define dimensionless bare coupling constant

$$
\lambda=\Lambda G(\Lambda)
$$

The β-function is

$$
\beta(\Lambda)=\Lambda \frac{\partial \lambda(\Lambda)}{\partial \Lambda}, \quad \beta(\Lambda)=\frac{\lambda}{\lambda_{D}}\left(\lambda_{D}-\lambda\right)
$$

where $\lambda_{D}=\frac{2 N \pi^{2}}{4 N-1}$
there exists a nonzero UV-stable fixed point λ_{D} in the model

At rather large values of Λ

$$
\lambda(\Lambda)-\lambda_{D} \sim-\frac{g_{D}}{\Lambda}
$$

- at $\lambda>\lambda_{D}$ - chiral symmetry is broken
- at $\lambda<\lambda_{D}$ - symmetry of the model remains intact

Let us explore, using the CJT approach, the possibility of mass term

$$
\overline{S^{-1}}=i\left(\hat{p}+\tau m_{H}\right), \quad \text { i.e. } \quad \bar{S}=-i \frac{\hat{p}+\tau m_{H}}{p^{2}-m_{H}^{2}}
$$

\mathcal{P} - breaking \mathcal{T} - symmetric

Keep chiral symmetries Γ^{5} and Γ^{3} intact
the UV divergence can be removed from the gap equations if we require the following behavior of the bare coupling constant $G \equiv G(\Lambda)$ vs Λ

$$
\frac{1}{G(\Lambda)}=-\frac{1}{2 N \pi^{2}}\left(\Lambda+g_{H} \frac{\pi}{2}+g_{H} \mathcal{O}\left(\frac{g_{H}}{\Lambda}\right)\right)
$$

where g_{H} is a finite Λ-independent and renormalization group invariant quantity, and it can also be considered as a new free parameter of the model.

$$
m_{H}\left(g_{H}+\left|m_{H}\right|\right)=0
$$

- at $g_{H}>0$ its global minimum lies at the point $m_{H}=0$, and no dynamical generation of Haldane mass
- at $g_{H}<0$ the global minimum is achieved at $m_{H}=\left|g_{H}\right|$

$$
m_{H}=\left|g_{H}\right|
$$

At rather large values of Λ

$$
\lambda(\Lambda)-\lambda_{H} \sim \frac{2 \pi^{2} N g_{H}}{\Lambda}
$$

where $\lambda_{H}=-2 N \pi^{2}$

- at $\lambda>\lambda_{H}$ - parity remains intact
- at $\lambda<\lambda_{H}$ - parity is broken

$$
\lambda<\lambda_{H} \text { - parity is broken }
$$

Since $\lambda_{H} \rightarrow-\infty$ at $N \rightarrow \infty$
we may conclude that in the limit of large N the $(2+1)$-D GN model cannot have a \mathbf{P}-odd phase and Haldane mass cannot arise dynamically

Let us explore the possibility that the solution of the gap equation has the form

$$
\overline{S^{-1}}=i\left(\hat{p}+i \gamma^{5} m_{5}+i \gamma^{3} m_{3}\right), \quad \text { i.e. } \quad \bar{S}=-i \frac{\hat{p}+i \gamma^{5} m_{5}+i \gamma^{3} m_{3}}{p^{2}-\left(m_{3}^{2}+m_{5}^{2}\right)}
$$

It corresponds to a dynamically generated mass term of the form $\mathcal{M}_{H}=\left(m_{5} \bar{\psi} i \gamma^{5} \psi+m_{3} \bar{\psi} i \gamma^{3} \psi\right)$ in the Lagrangian

Since m_{5} and m_{3} are some real numbers, this mass term is a Hermitian one.
the UV divergence can be removed from the gap equations if we require the following behavior of the bare coupling constant $G \equiv G(\Lambda)$ vs Λ

$$
\frac{1}{G(\Lambda)}=\frac{1}{2 N \pi^{2}}\left(\Lambda+g \frac{\pi}{2}+g \mathcal{O}\left(\frac{g}{\Lambda}\right)\right)
$$

where g is a finite Λ-independent and renormalization group invariant quantity, and it can also be considered as a new free parameter of the model.

- at $g>0$ only a trivial solution of the gap equations exists, $m_{3}=m_{5}=0$, and all discrete symmetries of the model remain intact
- at $g<0$

$$
m_{3}=|g| \cos \alpha, m_{5}=|g| \sin \alpha
$$

(where $0 \leq \alpha \leq \pi / 2$ is some arbitrary fixed angle)

At $g<0$ the system undergoes dynamic generation of the masses

$$
m_{3}=|g| \cos \alpha, \quad m_{5}=|g| \sin \alpha
$$

if $\alpha \neq 0, \pi / 2$ violation of all discrete symmetries is realized in the model.
if $\alpha=0$ then only -odd $m_{3}=|g|$ mass term is generated, and Γ^{3} chiral symmetry is dynamically violated.
if $\alpha=\pi / 2$ only -even $m_{5}=|g|$ mass term appears dynamically, and in this case chiral Γ^{5} symmetry is broken spontaneously.

At $g<0$ in all above mentioned cases (at arbitrary values of the angle parameter α) the genuine physical fermion mass, which is indeed a pole of the fermion propagator, is equal to

$$
M_{F}=\sqrt{m_{3}^{2}+m_{5}^{2}} \equiv|g|
$$

At rather large values of Λ

$$
\lambda(\Lambda)-\lambda_{35} \sim \frac{2 \pi^{2} N g}{\Lambda}
$$

- at $\lambda>\lambda_{35}-m_{5} \bar{\psi} i \gamma^{5} \psi+m_{3} \bar{\psi} i \gamma^{3} \psi$ mass term is dynamically generated
- at $\lambda<\lambda_{35}$ - symmetric phase

$$
\text { at } \lambda>\lambda_{35}-m_{5} \bar{\psi} i \gamma^{5} \psi+m_{3} \bar{\psi} i \gamma^{3} \psi \text { mass term is }
$$

$$
\text { where } \lambda_{35}=2 N \pi^{2}
$$

Since $\lambda_{35} \rightarrow \infty$ at $N \rightarrow \infty$
we may conclude that in the limit of large N there is no dynamical $m_{5} \bar{\psi} i \gamma^{5} \psi+m_{3} \bar{\psi} i \gamma^{3} \psi$ mass term generation

$$
\mathcal{M}_{H}=i m_{5} \bar{\psi}(x) \gamma^{5} \psi(x)+i m_{3} \bar{\psi}(x) \gamma^{3} \psi(x)
$$

$$
\mathcal{M}_{N H 1}=i m_{5} \bar{\psi}(x) \gamma^{5} \psi(x)+m_{3} \bar{\psi}(x) \gamma^{3} \psi(x)
$$

$$
\mathcal{P} \mathcal{T} \text { - symmetric }
$$

$$
\mathcal{M}_{N H 2}=m_{5} \bar{\psi}(x) \gamma^{5} \psi(x)+i m_{3} \bar{\psi}(x) \gamma^{3} \psi(x)
$$

$$
\mathcal{P} \mathcal{T} \text { - breaking }
$$

Let us explore, using the CJT approach, the possibility of the dynamic appearance of a non-Hermitian and $\mathcal{P} \mathcal{T}$ symmetric mass term $\mathcal{M}_{N H 1}$

$$
\overline{S^{-1}}=i\left(\hat{p}+i \gamma^{5} m_{5}+\gamma^{3} m_{3}\right), \quad \text { i.e. } \quad \bar{S}=-i \frac{\hat{p}+i \gamma^{5} m_{5}+\gamma^{3} m_{3}}{p^{2}-\left(m_{5}^{2}-m_{3}^{2}\right)}
$$

where m_{3} and m_{5} are real quantities.

Suppose that $m_{5}^{2} \geq m_{3}^{2}$

- at $g>0$ its global minimum lies at the point $m_{5}=m_{3}=0$, and dynamical mass generation is absent
- at $g<0$ the global minimum is achieved at arbitrary $\left(m_{3}, m_{5}\right)$ point such that $m_{5}^{2}-m_{3}^{2}=g^{2}$

$$
m_{3}=|g| \sinh \beta, \quad m_{5}=|g| \cosh \beta
$$

Note that such a structure of the global minimum point of the model appears due to the emergent symmetry of the CJT effective potential with respect to non-Unitary transformations

$$
\binom{m_{5}}{m_{3}} \rightarrow\left(\begin{array}{cc}
\cosh \beta & \sinh \beta \\
\sinh \beta & \cosh \beta
\end{array}\right)\binom{m_{5}}{m_{3}} .
$$

the non-Hermitian but -odd mass term $\mathcal{M}_{N H 2}$

$$
\overline{S^{-1}}=i\left(\hat{p}+\gamma^{5} m_{5}+i \gamma^{3} m_{3}\right), \quad \text { i.e. } \quad \bar{S}=-i \frac{\hat{p}+\gamma^{5} m_{5}+i \gamma^{3} m_{3}}{p^{2}-\left(m_{3}^{2}-m_{5}^{2}\right)}
$$

where m_{3} and m_{5} are real quantities.

Suppose that $m_{5}^{2} \geq m_{3}^{2}$

It can be shown in exactly the same way that for the same dependence of the bare coupling constant G vs Λ, there exists a nontrivial solution of the renormalized stationary
(Dyson-Schwinger) equation

- at $g<0$ of the non-Hermitian but $\mathcal{P} \mathcal{T}$-odd mass term $\mathcal{M}_{N H 2}$ in the model.

$$
\begin{aligned}
& m_{3}=|g| \cosh \omega, \quad m_{5}=|g| \sinh \omega \\
& \sqrt{m_{3}^{2}-m_{5}^{2}} \equiv|g| \\
& \text { fermion pole mass } M_{F}=\sqrt{m_{3}^{2}-m_{5}^{2}} \equiv|g|
\end{aligned}
$$

At rather large values of Λ

$$
\lambda(\Lambda)-\lambda_{35} \sim-\frac{2 \pi^{2} N g}{\Lambda}
$$

- at $\lambda>\lambda_{35}$ - non-Hermitian mass term could be dynamically generated
- at $\lambda<\lambda_{35}$ - no non-Hermitian mass terms is dynamically generated
at $\lambda>\lambda_{35}$ - non-Hermitian mass terms could be dynamically generated

$$
\text { where } \lambda_{35}=2 N \pi^{2}
$$

Since $\lambda_{35} \rightarrow \infty$ at $N \rightarrow \infty$
we may conclude that in the limit of large N there is no dynamical generation of non-Hermitian mass terms

- There has been studied the possibility of the dynamical appearance of both Hermitian and non-Hermitian mass terms in the originally Hermitian massless (2+1)-dimensional GN model
- the effect of spontaneous non-Hermiticity can be detected only outside the large- N expansion technique
- There has been shown that parity breaking Haldane mass can be generated dynamically in the model

