Proof to count bound state nodes in supersymmetric quantum mechanics

Asya Aynbund ${ }^{1}$, Valery V. Kiselev 1,2

aynbund.asya@phystech.edu, kiselev.vv@phystech.edu
${ }^{1}$ Moscow Institute of Physics and Technology (MIPT) ${ }^{2}$ Institute of High Energy Physics (IHEP- NRC KI)

6th International Conference on Particle Physics and Astrophysics (ICPPA-2022)
MEPhI, Moscow

November 30, 2022

Sections

- Introduction
- Machinery of Supersymmetric Quantum Mechanics
- The ground state in discrete spectrum
- Counting the nodes
- Conclusion

Introduction

- New way of bound states nodes counting complimentary to ordinary program
- Classics: «Schrödinger equation»
F.A.Berezin and M.A.Shubin proved the same statements by using the Sturm-Liouville theory in a set of theorems
- This talk: use instead the Supersymmetric OM math

Machinery of Supersymmetric Quantum Mechanics

- One-dimensional stationary Schrödinger equation
- A set of bound state levels ($\Psi_{k}^{(1)}$ and $\Psi_{k}^{(2)}$), Ψ_{0} - the ground state to be real
- Define A^{-}linear differential operator by M.Crum:

$$
A^{-}=-\frac{d}{d x}+\frac{\Psi_{0}^{\prime}}{\Psi_{0}}
$$

- Operators of super-generators Q and $\bar{Q} \equiv Q^{\dagger}$ by E.Witten:
$Q=\frac{\hbar}{\sqrt{2 m}}\left(\begin{array}{cc}0 & 0 \\ A^{-} & 0\end{array}\right)$ and $\bar{Q}=\frac{\hbar}{\sqrt{2 m}}\left(\begin{array}{cc}0 & A^{+} \\ 0 & 0\end{array}\right)$ act on $\binom{\Psi^{(1)}}{\Psi^{(2)}}$

Machinery of Supersymmetric Quantum Mechanics

- The supersymmetric Hamiltonian \mathscr{H} :

$$
\mathscr{H}=\{Q, \bar{Q}\}, \quad[Q, \mathscr{H}]=0 \text { and } Q^{2}=\bar{Q}^{2}=0
$$

- In matrix form:

$$
\mathscr{H}=\frac{\hbar^{2}}{2 m}\left(\begin{array}{cc}
A^{+} A^{-} & 0 \\
0 & A^{-} A^{+}
\end{array}\right)=\left(\begin{array}{cc}
H_{1}-E_{0} & 0 \\
0 & H_{2}-E_{0}
\end{array}\right)
$$

- So:

$$
\hat{H}_{1} \Psi_{k}^{(1)}=E_{k} \Psi_{k}^{(1)}, \quad \hat{H}_{2} \Psi_{k}^{(2)}=E_{k} \Psi_{k}^{(2)}
$$

The ground state in discrete spectrum

- Ψ_{0} satisfies the equation of ground state:

$$
A^{-} \Psi_{0}=0
$$

- Easy
$A^{-} \Psi_{0}=0 \quad \Rightarrow \quad A^{-}\left|\Psi_{0}\right|=0 \quad \Rightarrow \quad \Psi_{0}=C\left|\Psi_{0}\right|$
- Ψ_{0} is nodeless

Counting the nodes: the scheme

There are more nodes of excited levels

E_{0}

$$
H_{1} \quad H_{2}
$$

Counting the nodes: in details

- Direct action:

$$
\left[A^{+} \Psi_{1}^{(2)}\right] \cdot \Psi_{0}=\left[\frac{2 m}{\hbar^{2}}\left(E_{1}-E_{0}\right) \Psi_{1}^{(1)}\right] \cdot \Psi_{0}=-W_{\Psi_{0} \Psi_{1}^{(1)}}^{\prime}
$$

where $W_{\Psi_{0} \Psi_{1}^{(1)}}^{\prime}$ is Wronskian derivative of Ψ_{0} and $\Psi_{1}^{(1)}$

- Explicitly:

$$
\left[A^{+} \Psi_{1}^{(2)}\right] \cdot \Psi_{0}=\left(\Psi_{0} \cdot \Psi_{1}^{(2)}\right)^{\prime}
$$

- While

$$
-W_{\Psi_{0} \Psi_{1}^{(1)}}^{\prime}=\left(\Psi_{0} \cdot \Psi_{1}^{(2)}\right)^{\prime} \Rightarrow-W_{\Psi_{0} \Psi_{1}^{(1)}}=\Psi_{0} \cdot \Psi_{1}^{(2)}
$$

Counting the nodes: in details

- Revealing the Wronskian by it’s definition:

No nodes inside
 No nodes inside

$$
\Psi_{0}^{\prime} \Psi_{\downarrow}^{(1)}-\Psi_{0}^{\hat{\uparrow}} \Psi_{1}^{\prime(1)}=\Psi_{0} \cdot \Psi_{1}^{(2)}
$$

$$
E_{1}>E_{0} \Rightarrow \text { more nodes } \exists \geqslant 1 \text { node } \Rightarrow \exists-\infty<x_{1}<+\infty: \Psi_{1}^{(1)}\left(x_{1}\right)=0
$$

- $\forall x_{1}: \Psi_{1}^{(1)}\left(x_{1}\right)=0$:

continuous wave function
$\Psi_{1}^{\prime(1)}\left(x_{1}\right)<0 \Rightarrow \quad \begin{gathered}\text { in all nodes } \\ \text { derivative is negative }\end{gathered} \Rightarrow \leqslant 1$ node \Rightarrow
exactly single node

Conclusion

- New modern proof for counting the nodes using the elegant math of Supersymmetric QM
- Implications \rightarrow could be used in QM books instead of classical Sturm-Liouville

Thank you for your attention!

Super-transformations

- Infinitesimal supersymmetric transformations:
$\Lambda_{S}=1+\mathrm{i}(\epsilon Q+\bar{Q} \bar{\epsilon}), \quad \epsilon$ is grassmanninan variable
$\Lambda_{S}\binom{\Psi^{(1)}}{0}=\binom{\Psi^{(1)}}{0}+\epsilon\binom{0}{\frac{\hbar}{\sqrt{2 m}} A^{-} \Psi^{(1)}}=\left|\Psi^{(1)}\right\rangle+\left|\Psi^{(2)}\right\rangle$
- $\left|\Psi^{(1)}\right\rangle$ complex (bosonic) state,
- $\left|\Psi^{(2)}\right\rangle$ grassmannian (fermionic) state

