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Abstract

The Landau-Khalatnikov-Fradkin (LKF) transformation is a pow-

erful and elegant transformation allowing to study the gauge de-

pendence of the propagator of charged particles interacting with

gauge fields.

With the help of this transformation, we derive a non-perturbative

identity between massless propagators in two different gauges.

From this identity, we find that the corresponding perturbative se-

ries can be exactly expressed in terms of a hatted transcendental

basis that eliminates all even ζ-values. Our construction further

allows us to derive an exact formula relating hatted and standard

ζ-values to all orders of perturbation theory.



0. Introduction

Gauge invariance governs the dynamics of systems of charged

particles with deep consequences in elementary particle physics and

beyond. Through the gauge principle, it gives rise to gauge field

theories the prototype of which is quantum electrodynamics (QED).

While physical quantities should not depend on this parameter,

precious information can be obtained by studying the ξ-dependence

of various correlation functions.



Such a task can be carried out with the help of the Landau-

Khalatnikov-Fradkin (LKF) transformation

(Landau, Khalatnikov: 1956), (Fradkin:1956)

that elegantly relates the QED fermion propagator SF (p, ξ) and

SF (p, η) in two different ξ and η gauges. In dimensional regular-

ization, it reads:

SF (x, ξ) = SF (x, η) e
i (D(x)−D(0)) ,

where

D(x) = −i ∆ e2 µ4−d ∫ ddp

(2π)d
e−ipx

p4
, ∆ = ξ − η .



Let us show basic steps of (Landau, Khalatnikov: 1956).

Gauge invariance arises in the field theory of charged particles

interacting with an electromagnetic field. Given a gauge transfor-

mation of the potential of electromagnetic field

Aµ → Aµ +
∂ϕ(x)

∂xµ
,

where ϕ(x) is an arbitrary operator function.

The Ψ-function of particle is transformed as follows:

Ψ(x) → Ψ(x)eieϕ(x)

Question: how the Green’s function SF (x) for the particles will

change under such a gauge transformation.



We would like to note that Fourier components of the Green’s

function Gµν(x) for photons can be written in the general case in

the form

Gµν(k) ∼
dt(k)

k2











δµν −
kµkν
k2











+ dl(k)
kµkν
k2

,

where the terms containing dt(k) and dl(k) represent respectively

the transverse and longitudinal parts of the function Gµν.

Moreover, the longitudinal part does not depend upon interaction

with the field.



The Green’s function Dϕ(x) for the ϕ(x) field is connected with

the longitudinal part Gl
µν(x) of the Green’s function for photons:

Gl
µν(x) =

∂2Dϕ(x)

∂xµ∂xν
.

So, Fourier components of the Green’s function Dϕ(x) for the

ϕ(x) field can be written in the form

Dϕ(k) ∼
dl(k)

k4

with dl(k) ∼ 1. It is very unusual Green’s function.



Taking the above transformation for Ψ-function of particle and

using the fact that he operators ϕ(x) represent a free field, Landau,

and Khalatnikov found the gauge transformation for the Green’s

function SF (x) as

SF (x) = St
F (x)× eie

2(Dϕ(0)−Dϕ(x))

where St
F (x) is the Green’s function in the Landau gauge.



The most important applications of the Landau-Khalatnikov-Fradkin

(LKF) transformation

(Curtis, Pennington: 1990), (Dong, Munczek, Roberts: 1994, 1996),

(Bashir, Kizilersu, Pennington: 1998, 2000), (Burden, Tjiang: 1998),

(Jia, Pennington: 2016, 2017)

are related to the study of the gauge covariance of QED Schwinger-

Dyson equations and their solutions. This allows, e.g., to construct

a charged-particle-photon vertex ansatz both in scalar

(Fernandez-Rangel, Bashir, Gutierrez-Guerrero, Concha-Sanchez:

2016), (Ahmadiniaz, Bashir, Schubert: 2016)

and spinor QED (Kizilersu, Pennington: 2009).



in quenched QED3

(Gusynin,Kotikov,Teber:2020), (Pikelner,Gusynin,Kotikov,Teber:2020)

assuming the finiteness of the perturbative expansion, we state that,

exactly in d = 3, all odd perturbative coefficients, starting with the

third order one, should be zero in any gauge. To check the result,

we calculate the three- and four-loop corrections to the massless

fermion propagator. The three-loop correction is finite and gauge

invariant but, however, the four-loop one has singularities except

in the Feynman gauge where it is also finite. These results explic-

itly show an absence of the finiteness of the perturbative expansion

in quenched three-dimensional QED. Moreover, up to four loops,

gauge-dependent terms are completely determined by lower order

ones in agreement with the LKF transformation.



Other applications

(Bashir, Raya: 2002), (Jia, Pennington: 2017)

are focused on estimating large orders of perturbation theory.

Indeed, the non-perturbative nature of the LKF transformation al-

lows to fix some of the coefficients of the all-order expansion of

the fermion propagator. Starting with a perturbative propagator

in some fixed gauge, say η, all the coefficients depending on the

difference between the gauge fixing parameters of the two prop-

agators, ξ − η, get fixed by a weak coupling expansion of the

LKF-transformed initial one. Such estimations have been carried

out for QED in various dimensions (see (Bashir, Raya: 2002), (Jia,

Pennington: 2017)), for generalizations to brane worlds (Ahmad,

Cobos-Martinez, Concha-Sanchez, Raya: 2016), (James, A.V.K.,

Teber: 2020) and for more general SU(N) gauge theories (Meer-

leer, Dudal, Sorella, Dall’Olio, Bashir: 2018).



0.1 Hatted ζ-values

A seemingly unrelated topic is focused on the multi-loop structure

of propagator-type functions (p-functions)

Following (Baikov, Chetyrkin: 2018) by p-functions we understand

(MS-renormalized) Euclidean 2-point functions (that can also be

obtained from 3-point functions by setting one external momen-

tum to zero with the help of infra-red rearrangement) expressible

in terms of massless propagator-type Feynman integrals also known

as p-integrals.

About three decades ago, it was noticed that all contributions

proportional to ζ4 = π4/90 mysteriously cancel out in the Adler

function at three-loops (Gorishnii, Kataev, Larin: 1990).



Two decades later, it was shown that the four-loop contribution

is also π-free and that a similar fact holds for the coefficient func-

tion of the Bjorken sum rule (Baikov, Chetyrkin, Kühn: 2010).

There is by now mounting evidence, see, e.g.,

(Baikov, Chetyrkin, Kühn: 2017), (Chetyrkin, Falcioni, Herzog,

Vermaseren: 2017), (Herzog, Ruijl, Ueda, Vermaseren, Vogt: 2017,

2018), (Davies, Vogt: 2018), (Moch, Ruijl, Ueda, Vermaseren,

Vogt: 2018), (Vogt, Herzog, Moch, Ruijl, Ueda, Vermaseren: 2018),

that various massless Euclidean physical quantities demonstrate

striking regularities in terms proportional to even ζ-function val-

ues, ζ2n, e.g., to π2n with n being a positive integer.



Such puzzling facts have recently given rise to the “no-π theo-

rem”. The latter is based on the observation

(Broadhurst: 1999), (Baikov, Chetyrkin: 2010, 2018)

that the ε-dependent transformation of the ζ-values:

ζ̂3 ≡ ζ3 +
3ε

2
ζ4 −

5ε3

2
ζ6, ζ̂5 ≡ ζ5 +

5ε

2
ζ6, ζ̂7 ≡ ζ7 ,

eliminates even zetas from the expansion of four-loop p-integrals.

A generalization to 5- , 6- and 7-loops is available in

(Georgoudis, Goncalves, Panzer, Pereira: 2018), (Baikov, Chetyrkin:

2018, 2019), respectively.

!!! Note that these results also contain multi-zeta values the con-

sideration of which is beyond the scope of the present study. !!!

Definition:

ζa =
∑

k>1

1

ka
, ζa,b =

∑

k>m>1

1

kamb, ζa,b,c =
∑

k>m>l>1

1

kamblc
.



In the present paper, we shall use the LKF transformation in or-

der to study general properties of the coefficients of the propagator.

We will show how the transformation naturally reveals the existence

of the hatted transcendental basis. Moreover, it will allow us to ex-

tend the above results to any order in ε.



The appearance of the hatted transcendental basis from the LKF

transformation can be naturally understood in the following way.

The LKF transformation produces all-loop results for very restricted

objects: the difference of fermion propagators in two gauges. So, at

every order of the ε-expansion these all-loop results should contain

(at least, a part of) the basic properties of the corresponding master

integrals, i.e., the all-loop results should be expressed in the form

of (at least, a part of) the corresponding hatted ζ-values.

In a sense, it is not the full set of the hatted ζ-values but only the

one-fold ones. This comes from the fact that the results produced

by the LKF transformation contain only products of Γ-functions

and, thus, their expansions contain only the simple one-fold ζ-

values.



1. LKF transformation

In the following, we shall consider QED in an Euclidean space

of dimension d (d = 4 − 2ε). The general form of the fermion

propagator SF (p, ξ) in some gauge ξ reads:

SF (p, ξ) =
i

p̂
P (p, ξ) ,

where the factor p̂ containing Dirac γ-matrices, has been extracted.

It is also convenient to introduce the x-space representation SF (x, ξ)

of the fermion propagator as:

SF (x, ξ) = x̂ X(x, ξ) .



The two representations, SF (x, ξ) and SF (p, ξ), are related by

the Fourier transform which is defined as:

SF (p, ξ) =
∫ ddx

(2π)d/2
eipxSF (x, ξ) ,

SF (x, ξ) =
∫ ddp

(2π)d/2
e−ipx SF (p, ξ) .



The famous LKF transformation connects in a very simple way

the fermion propagator in two different gauges, e.g., ξ and η. In

dimensional regularization, it reads:

SF (x, ξ) = SF (x, η) e
i (D(x)−D(0)) ,

where

D(x) = −i ∆ e2 µ4−d ∫ ddp

(2π)d
e−ipx

p4
, ∆ = ξ − η .



Note that, in dimensional regularization, the term D(0) is pro-

portional to the massless tadpole T2, the massive counterpart of

which is defined as:

Tα(m
2) =

∫ ddp

(2π)d
e−ipx

(p2 +m2)α
.

The tadpole Tα(m
2) ∼ δ(α−d/2) in the massless limit and, thus,

D(0) = 0 in the framework of dimensional regularization. So, the

LKF transformation can be simplified as follows:

SF (x, ξ) = SF (x, η) e
iD(x) .



We may now proceed in calculating D(x) using the Fourier trans-

forms

∫

ddx
eipx

x2α
=

22α̃πd/2a(α)

p2α̃
, a(α) =

Γ(α̃)

Γ(α)
, α̃ =

d

2
− α ,

∫

ddp
e−ipx

p2α
=

22α̃πd/2a(α)

x2α̃
.

This yields:

D(x) = −i ∆ e2 (µ2x2)2−d/2 Γ(d/2− 2)

24(π)d/2
,

or, equivalently, with the parameter ε made explicit:

D(x) =
i∆A

ε
Γ(1− ε) (πµ2x2)ε, A =

αem
4π

=
e2

(4π)2
.

We see that D(x) contributes with a common factor ∆A accom-

panied by the singularity ε−1.



2. LKF transformation in momentum space

Let’s assume that, for some gauge fixing parameter η, the fermion

propagator SF (p, η) with external momentum p has the form

SF (p, ξ) =
1

ip̂
P (p, ξ) , P (p, η) =

∞
∑

m=0
am(η)Am















µ̃2

p2















mε

.

The am(η) are coefficients of the loop expansion of the propagator

and µ̃ is the renormalization scale:

µ̃2 = 4πµ2 ,

which lies somehow between the MS-scale µ and the MS-scale µ.



Then, using Fourier transforms , we obtain that:

SF (x, η) =
2d−1 x̂

(4π x2)d/2
∞
∑

m=0
bm(η)Am



πµ2x2




mε
,

bm(η) = am(η)
Γ(d/2−mε)

Γ(1 +mε)
.

With the help of an expansion of the LKF exponent, we have

SF (x, ξ) = SF (x, η)e
D(x) =

2d−1 x̂

(4π x2)d/2
∞
∑

m=0
bm(η)Am



πµ2x2




mε

×
∞
∑

l=0











−
Am∆

ε











l Γl(1− ε)

l!
(πµ2x2)lε .

Factorizing all x-dependence yields:

SF (x, ξ) =
2d−1 x̂

(4π x2)d/2
∞
∑

p=0
bp(ξ)A

m


πµ2x2




pε
,

bp(ξ) =
p
∑

m=0

bm(η)

(p−m)!











−
∆

ε











p−m
Γp−m(1− ε) .



Hence, taking the correspondence between the results for propa-

gators P (p, η) and SF (x, η) , respectively, together with the result

for SF (x, ξ), we have for P (p, ξ):

P (p, ξ) =
∞
∑

m=0
am(ξ)Am















µ̃2

p2















mε

, (1)

where

am(ξ) = bm(ξ)
Γ(1 +mε)

Γ(d/2−mε)

=
m
∑

l=0

al(η)

(m− l)!

Γ(d/2− lε)Γ(1 +mε)

Γ(1 + lε)Γ(d/2−mε)











−
∆

ε











m−l
Γm−l(1− ε) .

In this way, we have derived the expression of am(ξ) using a simple

expansion of the LKF exponent in x-space. From this representa-

tion of the LKF transformation, we see that the magnitude am(ξ)

is determined by al(η) with 0 ≤ l ≤ m.



The corresponding result for the p- and∆-dependencies of âm(ξ, p)

can be obtained by interchanging the order in the sums in the re-

sults for P (p, ξ). So, we have

P (p, ξ) =
∞
∑

m=0
âm(ξ, p)Am















µ̃2

p2















mε

,

where

âm(ξ, p) = am(η)
∞
∑

l=0

Γ(d/2−mε)Γ(1 + (l +m)ε

Γ(1 +mε)Γ(d/2− (l +m)ε)











−
Am∆

ε











l

×
Γl(1− ε)

l!















µ̃2

p2















lε

.

We would like to note that all of the above results may be ex-

pressed in d = 3−2ε with the help of the substitutions ε → 1/2+ε

and A2 µ = e2. The last replacement can also be expressed as

Aµ = α/(4π), with the dimensionful α = e2/(4π).



2.1 Scale fixing

In our present study, we consider only the case of the so-called

MS-like schemes. In such schemes, we need to fix specific terms

coming from the application of dimensional regularization. Such a

procedure will be called scale fixing and will play a crucial role in

our analysis.

Let’s first recall that the MS-scale µ is related to the previously

defined scale µ̃ with the help of:

µ2 = µ̃2 e−γ(simplest possibility),

[µ2ε = µ̃2ε Γ(1 + ε), µ2lε = µ̃2lε Γ(1 + lε), (other possibilities)]

where γ is the Euler constant. An advantage of the MS-scale is

that it subtracts the Euler constant γ from the ε-expansion.



Moreover, it is well known that, in calculations of two-point mass-

less diagrams, the final results do not display any ζ2. So it is conve-

nient to choose some scale which also subtracts ζ2 in intermediate

steps of the calculation. For this purpose, we shall consider two

different scales.



The first one is the popular G-scale (Chetyrkin, Kataev, Tkachov:

1980),

which subtracts the coefficient in factor of the singularity 1/ε in

the one-loop scalar p-type integral, i.e.,

µ2εG = µ̃2ε
Γ2(1− ε)Γ(1 + ε)

Γ(2− 2ε)
.

Following (Broadhurst: 1999),

we shall use a slight modification of this scale that we will refer

to as the g-scale and in which an additional factor 1/(1 − 2ε) is

subtracted from the one-loop result, i.e.,

µ2εg = µ̃2ε
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
.

The advantage of the g-scale (over the G-scale) will reveal itself in

discussions below related to the so-called transcendental weight of

various contributions.



We shall also introduce a new scale which is based on old calcu-

lations of massless diagrams performed by Vladimirov (Vladimirov:

1980), who added an additional factor Γ(1−ε) to each loop contri-

bution. The latter corresponds to adding the factor Γ−1(1− ε) to

the corresponding scale. We shall refer to this scale as the minimal

Vladimirov-scale, or MV-scale, and define

µ2εMV =
µ̃2ε

Γ(1− ε)
.

Notice that this form has been used once to define the MS scheme

(see Errata to (Kataev, Vardiashvili: 1988).)

As we will show below, the use of the MV-scale leads to simpler

results in comparison with the g one. Hence, the MV-scale is more

appropriate to our analysis and all our basic results will be given

in the MV-scale. After that we will discuss the differences coming

from the use of the g-scale.



In both the MV-scale and g-scale, we can rewrite the above result

in the following general form:

am(ξ) = am(η)
∞
∑

l=0

1− (m + 1)ε

1− (m + l + 1)ε
Φp(m, l, ε)

(∆A)l

(−ε)ll!















µ2p
p2















lε

,

where p =MV, g.

The factor (1 − (m + 1)ε)/(1− (m + l + 1)ε) has been specially

extracted from Φp(m, l, ε) in order to insure equal transcendental

level, i.e., the same value of s for ζs at every order of the ε-

expansion of Φp(m, l, ε) (see below).



Central to the present work, the factors ΦMV(m, l, ε) and Φg(m, l, ε)

read:

ΦMV(m, l, ε) =
Γ(1− (m + 1)ε)Γ(1 + (m + l)ε)Γ2l(1− ε)

Γ(1 +mε)Γ(1− (m + l + 1)ε)
,

Φg(m, l, ε) = ΦMV(m, l, ε)
Γl(1− 2ε)

Γ3l(1− ε)Γl(1 + ε)
,

and may be expressed as expansions in ζi (i ≥ 3).



3. MV-scale

The Γ-function Γ(1 + βε) has the following expansion:

Γ(1 + βε) = exp [− γβε +
∞
∑

s=2
(−1)s ηsβ

sεs], ηs =
ζs
s
.

that yields for the factor ΦMV(m, l, ε):

ΦMV(m, l, ε) = exp [
∞
∑

s=2
ηs ps(m, l) εs] ,

where

ps(m, l) = (m + 1)s − (m + l + 1)s + 2l + (−1)s{(m + l)s −ms} ,

and, as expected from the MV-scale, we do have:

p1(m, l) = 0, p2(m, l) = 0 .

Moreover ΦMV(m, l, ε) contains ζs-function values of a given

weight (or transcendental level) s in factor of εs.



4. Solution of the recurrence relations

We now focus on the polynomial ps(m, l) that is conveniently

separated in even and odd s values. Then, we see that the following

recursion relations hold:

p2k = p2k−1 + Lp2k−2 + p3, L = l(l + 1) ,

p2k−1 = p2k−2 + Lp2k−3 + p3 .

Specific to the MV-scheme, these relations only depend on L which

leads to strong simplifications.



Nevertheless, they are difficult to solve for arbitrary k. It is simpler

to proceed by explicitly considering the first values of k:

p4 = 2p3 ,

p5 = p4 + Lp3 + p3 = (3 + L)p3 ,

p6 = p5 + Lp4 + p3 = (4 + 3L)p3 ,

showing that ps takes the form of a polynomial in L in factor of

p3. Then, taking Lp3 from the second equation and put it to the

thirs one, yields:

Lp3 = p5 − 3p3, p6 = 3p5 − 5p3 ,

which reveals that the even polynomial p6 can be entirely expressed

in terms of the lower order odd ones, p3 and p5.



We may automate this procedure for higher values of k. The

general expression of ps is given by:

ps =
[s+12 −2]

∑

m=0
As,mLm p3 .

Taking Lkp3 from the equations for p2k−1 and substituting them

in the equations for p2k yields:

p2k =
k
∑

s=2
p2s−1C2k,2s−1 =

k−1
∑

m=1
p2k−2m+1C2k,2k−2m+1 .



From these results, it is possible to determine the exact k-dependence

of C2k,2s−1, which has the following structure:

C2k,2k−2m+1 = b2m−1
(2k)!

(2m− 1)! (2k − 2m + 1)!
,

with the first coefficients b2m−1 taking the values:

b1 =
1

2
, b3 = −

1

4
, b5 =

1

2
, b7 = −

17

2
, b9 =

31

2
,

b11 = −
691

4
, b13 =

5461

2
, b15 = −

929569

16
,

b17 =
3202291

2
, b19 = −

221930581

4
,

b21 =
4722116521

2
, b23 = −

968383680827

8
.

Examining the numerators of b2m−1, one can see that they are

proportional to the numerators of Bernoulli numbers. Indeed, a

closer inspection reveals that, accurate to a sign, the coefficients



b2m−1 coincide with the zero values of Euler polynomials En(x):

b2m−1 = −E2m−1(x = 0) ,

and therefore to Bernoulli and Genocchi numbers, Bm and Gm,

respectively, because

E2m−1(x = 0) =
G2m

2m
, G2m = −2 (22m − 1)B2m .

Hence, the compact formula for the coefficients b2m−1, expressed

through the well known Bernoulli numbers Bm, reads:

b2m−1 =
(22m − 1)

m
B2m .



4.1 Hatted ζ-values

At this point, it is convenient to represent the argument of the

exponential as follows:

∞
∑

s=3
ηs ps ε

s =
∞
∑

k=2
η2k p2k ε

2k +
∞
∑

k=2
η2k−1 p2k−1 ε

2k−1 .

Then

∞
∑

k=2
η2k p2k ε

2k =
∞
∑

k=2
η2k ε

2k k
∑

s=2
p2s−1C2k,2s−1

=
∞
∑

s=2
p2s−1

∞
∑

k=s
η2kC2k,2s−1 ε

2k .

Then, can be written as ∑∞
s=2 η̂2s−1 p2s−1 ε

2s−1 where

η̂2s−1 = η2s−1 +
∞
∑

k=s
η2k C2k,2s−1 ε

2(k−s)+1 .



Thus, we have

ΦMV(m, l, ε) = exp [
∞
∑

s=2
η̂2s−1 p2s−1 ε

2s−1] = exp [
∞
∑

s=2

ζ̂2s−1

2s− 1
p2s−1 ε

2s−1] ,

where

ζ̂2s−1 = ζ2s−1 +
∞
∑

k=s
ζ2k Ĉ2k,2s−1 ε

2(k−s)+1

with

C2k,2s−1 = b2k−2s+1
(2k)!

(2s− 1)! (2k − 2s + 1)!
,

Ĉ2k,2s−1 =
2s− 1

2k
C2k,2s−1 = b2k−2s+1

(2k − 1)!

(2s− 2)! (2k − 2s + 1)!
.

So, we provide an exact expression for the hatted ζ-values in terms

of the standard ones valid for all ε.



4.2 g-scale

We may proceed in a similar way for the factor Φg(m, l, ε), which

has the form

Φg(m, l, ε) = exp [
∞
∑

s=2
ηs p

g
s(m, l) εs] ,

where the new polynomial pgs(m, l) can be expressed in terms of

ps(m, l), as:

pgs(m, l) = ps(m, l) + δs(m, l) , δs(m, l) = (2s − 3− (−1)s)l ,

where δs(m, l) = 0 for s = 1 and s = 2 and, thus,

p
g
1(m, l) = 0, p

g
2(m, l) = 0 , (2)

similarly to the Vladimirov case, considered earlier.



We may then consider the even and odd values of s separately

leading to the following recursion relations:

p
g
2k = p2k + δ2k, δ2k = 4(22k−2 − 1)l ,

p
g
2k−1 = p2k−1 + δ2k−1, δ2k−1 =

1

2
δ2k .

These recurrence relations depend on the variable l but not on the

product L = l(l + 1) as it was for the MV-scale. So, the g-scale

recursion relations are essentially more complicated than the MV-

scale ones. Fortunately, it is very simple to see that in the relations:

p
g
2k =

k
∑

s=2
p
g
2s−1C2k,2s−1 ,

the coefficients C2k,2s−1 are exactly the same as earlier because the

corrections δ2k and δ2k−1 exactly cancel each other. So, the hatted

ζ-values for the g-scale are identical to the ones of the MV-scale.



5. Summary

From the LKF transformation of the fermion and scalar propaga-

tors we have found peculiar recursion relations between even and

odd values of the polynomial associated to the uniformly transcen-

dental factor ΦMV(m, l, ε).

These relations are simple in the new MV-scheme. They relate

the even and odd parts in a rather simple way which reveals the

possibility to express all results for ΦMV(m, l, ε) in terms of hatted

ζ-values.

In the more popular g-scheme, the corresponding recursion re-

lations are slightly more complicated but lead to the same rela-

tions between even and odd parts of the polynomial associated to

Φg(m, l, ε) and, correspondingly, to the same hatted ζ-values.



Our careful study of the recursion relations allowed us to derive

exact formulas, relating hatted and standard ζ-values to all orders

of perturbation theory.

The coefficients of the relations are expressed trough the well-

known Bernoulli numbers, B2m.

Our results provide stringent constraints on multi-loop calcula-

tions at any order in perturbation theory.

What about the multi-zeta values? It is open question!


