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Photon Polarization Operator

Photon polarization operator is typical example of two-point

correlation function

Lagrangian of spinor QED

LQED(x) = eQf

[
f̄ (x)γµf (x)

]
Aµ(x)

Matrix element of γ → γ transition

Mγ→γ = −i ε′∗µ (q)Pµν(q) εν

Pµν(q) is two-point correlator of two vector currents

Photon dispersion relations follow from the equations

q2 − Π(λ)(q) = 0 (λ = 1, 2, 3)

Π(λ)(q) are eigenvalues of the photon polarization operator

In an external background �eld, corresponding modi�cation

of fermion propagator should be taken into account
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Basic Tensors in Presence of Magnetic Field

Minkowski space �lled with external magnetic �eld is divided
into two subspaces:

Euclidean with the metric tensor Λµν = (ϕϕ)µν ;
plane orthogonal to the �eld strength vector
Pseudo-Euclidean with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν
Metric tensor of Minkowski space gµν = Λ̃µν − Λµν

Dimensionless tensor of the external magnetic �eld and its dual

ϕαβ =
Fαβ
B

, ϕ̃αβ =
1

2
εαβρσϕ

ρσ

Arbitrary four-vector aµ = (a0, a1, a2, a3) can be decomposed

into two orthogonal components

aµ = Λ̃µνa
ν − Λµνa

ν = a‖µ − a⊥µ

For the scalar product of two four-vectors one has

(ab) = (ab)‖ − (ab)⊥

(ab)‖ = (aΛ̃b) = aµΛ̃µνb
ν , (ab)⊥ = (aΛb) = aµΛµνb

ν
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Orthogonal Basis Motivated by Magnetic Field

Correlators having rank non-equal to zero, could be

decomposed in some orthogonal set of vectors

In magnetic �eld, such a basis naturally exists

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ

b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ

Arbitrary vector aµ can be presented as

aµ =
4∑

i=1

ai
b

(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ

Third-rank tensor Tµνρ can be decomposed similarly

Tµνρ =
4∑

i ,j ,k=1

Tijk
b

(i)
µ b

(j)
ν b

(k)
ρ

(b(i)b(i)) (b(j)b(j)) (b(k)b(k))
,

Tijk = Tµνρb(i)
µ b(j)

ν b(k)
ρ .
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Photon Polarization Operator in Magnetic Field

Π(λ)(q) are eigenvalues of the photon polarization operator

Pµν(q) =
3∑

λ=1

b
(λ)
µ b

(λ)
ν

(b(λ))2
Π(λ)(q)

In vacuum, Pµν(q) has two physical eigenmodes

In an external constant homogeneous magnetic �eld,

the number of physical eigenmodes is the same
Eigenvectors are determined by the �eld strength tensor

ε(1)
µ = b(1)

µ /
√
q2⊥, ε(2)

µ = b(2)
µ /
√
q2‖

In the magnetic �eld, Π(λ)(q) contains both vacuum and

�eld-induced parts (for electron)

Π(λ)(q) = −i P(q2)− α

π
Y

(λ)
VV

Details on Y
(λ)
VV can be found in A. Kuznetsov & N. Mikheev,

Electroweak Processes in External Electromagnetic Fields

(Springer, 2013)
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Inclusion of Fermion AMM

Models beyond the SM can produce e�ective operators at

current energies and Pauli Lagrangian density, in particular

LAMM(x) = −µf
2

[
f̄ (x)σµν f (x)

]
Fµν(x)

For electron, the coupling can be written as µe = µBae , where
µB = e/(2me) is Bohr magneton and ae is electron AMM

Total Lagrangian of interaction

Lint(x) = LQED(x) + LAMM(x)

It gives additional contribution to the polarization operator

Contribution linear in AMM is related with correlator of vector

and tensor currents, Π
(VT )
µνρ

Contribution quadratic in AMM is determined by correlator

of two tensor currents, Π
(TT )
µνρσ
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Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

Lagrangian density of local fermion interaction

Lint(x) =
[
f̄ (x)ΓAf (x)

]
JA(x)

JA � generalized current (photon, neutrino current, etc.)

ΓA � any of γ-matrices from the set

{1, γ5, γµ, γµγ5, σµν = i [γµ, γν ] /2}
Interaction constants are included into the current JA
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Introduction: General Case of Two-Point Correlator

✬
✫

✩
✪

✛
✚

✘
✙✉✉ ◗◗

✑✑

✑✑
◗◗

JA(q)

f

f

JB(q)

x yΓA ΓB

Two-point correlation function of general form

ΠAB =

∫
d4X e−i(qX ) Sp {SF(−X ) ΓA SF(X ) ΓB}

SF(X ) � gauge and translationally invariant part of the fermion
propagator

Xµ = xµ − yµ � integration variable

Correlations of scalar, pseudoscalar, vector and axial-vector currents
were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]

Consider correlations of a tensor current with the other ones
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Propagator in the Fock-Schwinger Representation

General representation of the propagator in magnetic �eld
[J.S. Schwinger, Phys. Rev. 82 (1951) 664]

GF(x , y) = e
iΩ(x,y) SF(x − y)

Gauge non-invariant phase factor

Ω(x , y) = −eQf

∫ x

y

dξµ
[
Aµ(ξ) +

1

2
Fµν(ξ − y)ν

]
In two-point correlation function phase factors cancel

Ω(x , y) + Ω(y , x) = 0

Gauge and translationally invariant part of the fermion propagator
(β = eB Qf )

SF(X ) = −
iβ

2(4π)2

∞∫
0

ds

s2

{
(X Λ̃γ) cot(βs)− i(X ϕ̃γ)γ5 −

−
βs

sin2(βs)
(XΛγ) + mf s [2 cot(βs) + (γϕγ)]

}
×

× exp

(
−i
[
m2

f s +
1

4s
(X Λ̃X )−

β cot(βs)

4
(XΛX )

])
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Correlator of Vector and Tensor Currents

Correlator of vector and tensor currents is rank-3 tensor

Vector-current conservation and anti-symmetry of the tensor

current reduce the number of independent coe�cients in the

basis decomposition to 18

Of them, four coe�cients only are non-trivial

Double-integral representation of coe�cients is used

Π
(VT)
ijk (q2, q2⊥, β) =

1

4π2

∞∫
0

dt

t

1∫
0

du Y
(VT)
ijk (q2, q2⊥, β; t, u)

× exp

{
−i

[
m2

f t −
q2‖
4

t (1− u2) + q2⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}

Integration variables and relation between momenta squared

t = s1 + s2, u = (s1 − s2)/(s1 + s2); q2‖ = q2 + q2⊥
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Integrands of Vector-Tensor Correlator

Y
(VT)
114 (q2, q2⊥, β; t, u) = −Y

(VT)
141 (q2, q2⊥, β; t, u) = −mf q

2
⊥ q2

βt cos(βtu)

sin(βt)

Y
(VT)
223 (q2, q2⊥, β; t, u) = −Y

(VT)
232 (q2, q2⊥, β; t, u)

= mf q
2
⊥ (q2‖)2

βt

sin(βt)
[cos(βt) − cos(βtu)]

Y
(VT)
224 (q2, q2⊥, β; t, u) = −Y

(VT)
242 (q2, q2⊥, β; t, u)

= mf q
2
‖

βt

sin(βt)

[
q2⊥ cos(βt) − q2‖ cos(βtu)

]
Y

(VT)
334 (q2, q2⊥, β; t, u) = −Y

(VT)
343 (q2, q2⊥, β; t, u) = −mf q

2
⊥ q2‖ (q2)2

βt cos(βtu)

sin(βt)

Choice of basic vectors is optimal because of vector current

conservation

Y
(VT)
4jk vanish in this basis

Anti-symmetry in the last two indices is due to antisymmetric

tensor current
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Correlator of Two Tensor Currents

Correlator of two tensor currents is rank-4 tensor

Anti-symmetry of the tensor currents reduce the number of

independent coe�cients in the basis decomposition to 36

Of them, eight coe�cients only are non-trivial

Double-integral representation of coe�cients is used

Π
(TT)
ijkl (q2, q2⊥, β) =

1

4π2

∞∫
0

dt

t

1∫
0

du Y
(TT)
ijkl (q2, q2⊥, β; t, u)

× exp

{
−i

[
m2

f t −
q2‖
4

t (1− u2) + q2⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}
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Integrands of Tensor-Tensor Correlator

Y
(TT)
1414 (q2‖, q

2
⊥, β; t, u) = −q2‖

{
2q2⊥ (q2⊥ + q2‖)

cos(βt) − cos(βtu)

sin2(βt)

+4q2⊥q
2
‖ [cos(βtu) − u sin(βtu) cot(βt)] − q2‖

[(
1− u2

)
q2‖ + 4m2

f

]
cos(βtu)

−q2⊥
[(
1− u2

)
q2‖ − 4m2

f

]
cos(βt) +

4i

t
q2‖

[
cos(βt) − βt

sin(βt)

]}

Y
(TT)
2424 (q2‖, q

2
⊥, β; t, u) = −q2‖

{
2q2⊥ (q2⊥ + q2‖)

cos(βt) − cos(βtu)

sin2(βt)

+4q2⊥q
2
‖ [cos(βtu) − u sin(βtu) cot(βt)] − q2‖

[(
1− u2

)
q2‖ + 4m2

f

]
cos(βtu)

−q2⊥
[(
1− u2

)
q2‖ − 4m2

f

]
cos(βt) +

4i

t
q2‖

[
cos(βt) − βt

sin(βt)

]}

The other coe�cients will be presented in a forthcoming paper
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AMM Contribution to Photon Polarization Operator

Field-induced part of Π(λ)(q) is modi�ed (for electrons)

Π(λ)(q) = −i P(q2)− α

π
Y

(λ)
VV +

α

π
ae Y

(λ)
VT +

α

π
a2e Y

(λ)
TT

Last two terms can be presented in the form of double integral

Y
(λ)
VT (TT ) =

∫ ∞
0

dt

t

∫
1

0

du

{
βt

sin(βt)
y

(λ)
VT (TT ) e

−iΩ − q2 e−iΩ0

}
Notations are from the book by A. Kuznetsov and N. Mikheev

Part independent on the �eld is subtracted

Integrands of vector-tensor part are as follows

y
(1)
VT = y

(3)
VT = q2 cos(βtu)

y
(2)
VT = q2‖ cos(βtu)− q2⊥ cos(βt)

For the electron, ae ∼ α and the AMM correction is small
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AMM Contribution to Photon Polarization Operator

Integrands of tensor-tensor part

y
(1)
TT =

Y
(TT )
1414

4m2
e q

2

⊥
, y

(2)
TT =

Y
(TT )
2424

4m2
e q

2

‖

For the electron, the tensor-tensor term gives α-suppressed
correction to the vector-tensor term
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Conclusions

Two-point correlators in presence of constant homogeneous

external magnetic �eld are considered

This analysis extended the previous one by inclusion of tensor

current into consideration

Study of correlators of tensor fermionic current with the others

allows to investigate e�ects of the fermion anomalous

magnetic moment in the one-loop approximation

Field-induced contribution to the photon polarization operator

linear and quadratic in electron anomalous magnetic moment

are calculated

Computer technique developed for two-point correlators is

planned to be applied for three-point ones
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Backup Slides
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Crossed-Field Limit

Pure �eld invariant vanishes (β → 0)

As basic vectors, accept the following orthonormalized set

b(1)
µ =

eQf

χf
(qF )µ, b(2)

µ =
eQf

χf
(qF̃ )µ

b(3)
µ =

e2Q2

f

χ2f
√
q2

[
q2 (qFF )µ − (qFFq) qµ

]
, b(4)

µ =
qµ√
q2

Dynamical parameter: χ2f = e2Q2

f (qFFq) = β2q2⊥
Coe�cients of the vector-tensor correlator in this basis:

Π
(VT )
ijk (q2, χf ) =

1

4π2

∞∫
0

dt

t

1∫
0

du Y
(VT )
ijk (q2, χf ; t, u)

× exp

{
−i
[(

m2

f −
q2

4
(1− u2)

)
t +

1

48
χ2f (1− u2)2t3

]}
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Vector-Tensor Correlator Integrands in Crossed Fields

Results for integrands in external electromagnetic crossed �elds

Y
(VT)
114

= −Y (VT)
141

= −mf

√
q2

Y
(VT)
223

= −Y (VT)
232

= mf
χ2f t

2

2
√

q2

(
1− u2

)
Y

(VT)
224

= −Y (VT)
242

= −mf

√
q2
[
1 +

χ2f t
2

2q2
(
1− u2

)]
Y

(VT)
334

= −Y (VT)
343

= −mf

√
q2
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