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Photon Polarization Operator

Photon polarization operator is typical example of two-point
correlation function

Lagrangian of spinor QED
Lqorn(x) = eQf [F(X)'y#f(x)] AF(x)

Matrix element of v — ~ transition
7(9) 1(d)

My = —igi(a) P (q) 2, B

PH(q) is two-point correlator of two vector currents

@ Photon dispersion relations follow from the equations

@ -NM(g) =0 (A=1,2,3)

° I'I(’\)(q) are eigenvalues of the photon polarization operator

@ In an external background field, corresponding modification

of fermion propagator should be taken into account
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Basic Tensors in Presence of Magnetic Field

@ Minkowski space filled with external magnetic field is divided
into two subspaces:
o Euclidean with the metric tensor A, = (09)uv;
plane orthogonal to the field strength vector

o Pseudo-Euclidean with the metric tensor A, = (@),

o Metric tensor of Minkowski space g, = Ay — A
@ Dimensionless tensor of the external magnetic field and its dual

F, - 1
Pap = %,37 PaB = 5 5aﬂp090p0

@ Arbitrary four-vector a# = (ap, a1, az, az) can be decomposed
into two orthogonal components

a, = /~\Wa” —N\wa” = |y — aly
@ For the scalar product of two four-vectors one has
(ab) = (ab)H — (ab)L
(ab)| = (alb) = a"A,,b", (ab)y = (ahb) = &N, b
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Orthogonal Basis Motivated by Magnetic Field

o Correlators having rank non-equal to zero, could be
decomposed in some orthogonal set of vectors
@ In magpnetic field, such a basis naturally exists

b;(}) = (QSD)W bLZ) = (qSZ),u
b = o (Ag)y — (aMg) qu, B = g,

@ Arbitrary vector a, can be presented as

_ ) ENTYR ()
a, = ;a, (b(")b("))’ aj—=a bﬂ

@ Third-rank tensor T,,, can be decomposed similarly

4 B b9 b
2 Tk (50 (b060)) (50 6(R))’

Tk = T“”Pb( ) pU )b£’<).
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Photon Polarization Operator in Magnetic Field

° I'I(’\)(q) are eigenvalues of the photon polarization operator

3 bL/\)bI(j)\) R
Puv(a) = Z W (q)

@ In vacuum, P,,(q) has two physical eigenmodes

@ In an external constant homogeneous magnetic field,
the number of physical eigenmodes is the same

@ Eigenvectors are determined by the field strength tensor

S N N
e In the magnetic field, M) (q) contains both vacuum and
field-induced parts (for electron)

. a (A
N (q) = =iP(@) - = v
@ Details on Y\(/?/) can be found in A. Kuznetsov & N. Mikheev,
Electroweak Processes in External Electromagnetic Fields

(Springer, 2013)



Inclusion of Fermion AMM

@ Models beyond the SM can produce effective operators at
current energies and Pauli Lagrangian density, in particular

Lanivi(x) = f% [F(x)o F(x)] F*(x)

@ For electron, the coupling can be written as je = pupae, where
ug = e/(2mg) is Bohr magneton and a. is electron AMM

@ Total Lagrangian of interaction
Lint(x) = LqED(x) + Lamm(x)

o It gives additional contribution to the polarization operator
@ Contribution linear in AMM is related with correlator of vector
(VT
and tensor currents, M,

o Contribution quadratic in AMM is determined by correlator

TT
of two tensor currents, I'I,(wpg)
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Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]
e Lagrangian density of local fermion interaction
Lint(x) = [FOMF(x)] Jax)

e Jp — generalized current (photon, neutrino current, etc.)
@ [4 — any of y-matrices from the set

11, 95, Yo VY85 O = i [y W] /23
@ Interaction constants are included into the current Jy
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Introduction: General Case of Two-Point Correlator

@ Two-point correlation function of general form
Mag = /d“X e @) Sp {Sp(—X)Ta Se(X) T8}

@ Sp(X) — gauge and translationally invariant part of the fermion
propagator

@ XH = x# — y* — integration variable

@ Correlations of scalar, pseudoscalar, vector and axial-vector currents
were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]

@ Consider correlations of a tensor current with the other ones

7/18



Propagator in the Fock-Schwinger Representation

@ General representation of the propagator in magnetic field
[J.S. Schwinger, Phys. Rev. 82 (1951) 664]

Gr(x,y) = ) Sp(x — y)

@ Gauge non-invariant phase factor

X 1 y

Ax,y) = —e@s [ de" [AE) + JFuels ~)

y

@ In two-point correlation function phase factors cancel
Qx,y) +Q(y,x) =0

@ Gauge and translationally invariant part of the fermion propagator

(5295 Qf)
Se) = —gras [ S { xR con(s) — itxns -
0
— s XM+ s eon(5s) + ()] |
. L i Beot(ds)
Xem@ﬂﬁ”iﬂ“”—‘i‘*mmb o/18



Correlator of Vector and Tensor Currents

Correlator of vector and tensor currents is rank-3 tensor

@ Vector-current conservation and anti-symmetry of the tensor
current reduce the number of independent coefficients in the
basis decomposition to 18

Of them, four coefficients only are non-trivial
@ Double-integral representation of coefficients is used

G (a*, . 8) %/d?/du YOG ¢, it u)
0
oo e Tty o]

Integration variables and relation between momenta squared
t=s1+s u=(s1-%)/(ss+%); o =q¢+qi
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Integrands of Vector-Tensor Correlator

2 Bt cos(Stu)

27Qi>ﬂ; t7 U) 141 (q qL7B t U) —my Qiq sm(ﬁt)

VT
Y1(14 )(q

223 (q QJ_aﬁ t, U) _Yzsz (q2 inB; t, ’J)

= mr L (a1)° g [eos(91) — cos(Beu)]

Y2(24 )(q qJ.:B t U) —Yz(sz)(q27in8; t> U)

= mr qf W [¢% cos(Bt) — gf cos(Btu)]

tcos(ptu
Y (@, at, Bitou) = Y (P ¢ Bitu) = —myr 4 of (0°) Bteos(ftu)
sin(5t)
@ Choice of basic vectors is optimal because of vector current

conservation
° Y4(J.\£T) vanish in this basis
@ Anti-symmetry in the last two indices is due to antisymmetric

tensor current 10718



Correlator of Two Tensor Currents

Correlator of two tensor currents is rank-4 tensor

Anti-symmetry of the tensor currents reduce the number of
independent coefficients in the basis decomposition to 36

Of them, eight coefficients only are non-trivial
Double-integral representation of coefficients is used

1
1 [dt
NG (%, a1, 8) = fz/t/d“YUkT/T (6°,q%,B: t,u)
0 0

X exp {/ {m?t - %ﬁ t(l—d*)+qL Cos(ﬂtu)._ Cos(m)} }

23 sin(St)
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Integrands of Tensor-Tensor Correlator

cos(ft) — cos(Btu)
sin?(Bt)
+4qiqﬁ [cos(Btu) — usin(Btu) cot(Bt)] — qﬁ [(1- u2) qﬁ + 4m;] cos(fBtu)

<o [(1 ) ot~ an] cos(5) + gt |eos(3) ~ | |

Yauat, ¢, Bit,u) = —qf {qu (¢ +q)

cos(fBt) — cos(Btu)
sin?(Bt)
—|—4qiqﬁ [cos(Btu) — usin(Btu) cot(Bt)] — qﬁ [(1- u2) qﬁ + 4m?] cos(Btu)

_qi [(1 — u2) qﬁ — 4mﬂ COS(ﬂt) —+ i;qﬁ [Cos(ﬂt) _ Sin/[g;t):l }

Yioa(at, ¢, Bit,u) = —qf {qu (¢ +q))

@ The other coefficients will be presented in a forthcoming paper
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AMM Contribution to Photon Polarization Operator

o Field-induced part of NM)(q) is modified (for eIectrons)
Nig) = —iP(R) - Ly» @ (/\) s Y(A)
(CI) ’P(q) . V\/+7T3e +
@ Last two terms can be presented in the form of double integral

dt 0N —iQ 2 _—i0
Yorm) = / / {s.nﬁt yrgme o ae

Notations are from the book by A. Kuznetsov and N. Mikheev

Part independent on the field is subtracted

Integrands of vector-tensor part are as follows
3
Yot = yor = ¢ cos(Btu)
y3) = qf cos(Btu) — @3 cos(Bt)

@ For the electron, a. ~ « and the AMM correction is small
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AMM Contribution to Photon Polarization Operator

@ Integrands of tensor-tensor part

(TT) (TT)
y(l) Y1414 @ _ Yo
T 4m2 g2’ T 4m2 qH

@ For the electron, the tensor-tensor term gives a-suppressed
correction to the vector-tensor term
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Conclusions

e Two-point correlators in presence of constant homogeneous
external magnetic field are considered

@ This analysis extended the previous one by inclusion of tensor
current into consideration

@ Study of correlators of tensor fermionic current with the others
allows to investigate effects of the fermion anomalous
magnetic moment in the one-loop approximation

@ Field-induced contribution to the photon polarization operator
linear and quadratic in electron anomalous magnetic moment
are calculated

@ Computer technique developed for two-point correlators is
planned to be applied for three-point ones
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Backup Slides
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Crossed-Field Limit

@ Pure field invariant vanishes (8 — 0)
@ As basic vectors, accept the following orthonormalized set

eQr
b = S (gFy),, b = S (gF
I Xf (q )l I Xf (q )M

e’ Q7 q
by = ——=[4* (aFF). — (aFFa) qu] . bP = %

e S Ve

o Dynamical parameter: X% = €>Q? (¢FFq) = 3°q4
o Coefficients of the vector-tensor correlator in this basis:

T a2

cor{o (o) o are]
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o 1 Tt |
I_Il(Jk )(q Xf T/du \/’Jk (q27 Xfi t, U)
0



Vector-Tensor Correlator Integrands in Crossed Fields

@ Results for integrands in external electromagnetic crossed fields

Y1(1\51T) = 141 = _mf\/i
i = vz%“ @ 1435 ()
Y3(3\51T) = 343 = —me\/?
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