Photon Polarization Operator in External Electromagnetic Field with Account of Virtual-Fermion AMM

Alexandra Dobrynina

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia

The 6th International Conference on Particle Physics and Astrophysics (ICPPA-2022)
Moscow, Russia, 29 November - 2 December, 2022
in collaboration with llya Karabanov, Alexander Parkhomenko \& Lubov Vassilevskaya

Photon Polarization Operator

- Photon polarization operator is typical example of two-point correlation function
- Lagrangian of spinor QED

$$
\mathcal{L}_{\mathrm{QED}}(x)=e Q_{f}\left[\bar{f}(x) \gamma_{\mu} f(x)\right] A^{\mu}(x)
$$

- Matrix element of $\gamma \rightarrow \gamma$ transition

$$
\mathcal{M}_{\gamma \rightarrow \gamma}=-i \varepsilon_{\mu}^{*}(q) \mathcal{P}^{\mu \nu}(q) \varepsilon_{\nu}
$$

- $\mathcal{P}^{\mu \nu}(q)$ is two-point correlator of two vector currents
- Photon dispersion relations follow from the equations

$$
q^{2}-\Pi^{(\lambda)}(q)=0 \quad(\lambda=1,2,3)
$$

- $\Pi^{(\lambda)}(q)$ are eigenvalues of the photon polarization operator
- In an external background field, corresponding modification of fermion propagator should be taken into account

Basic Tensors in Presence of Magnetic Field

- Minkowski space filled with external magnetic field is divided into two subspaces:
- Euclidean with the metric tensor $\Lambda_{\mu \nu}=(\varphi \varphi)_{\mu \nu}$; plane orthogonal to the field strength vector
- Pseudo-Euclidean with the metric tensor $\tilde{\Lambda}_{\mu \nu}=(\tilde{\varphi} \tilde{\varphi})_{\mu \nu}$
- Metric tensor of Minkowski space $g_{\mu \nu}=\tilde{\Lambda}_{\mu \nu}-\Lambda_{\mu \nu}$
- Dimensionless tensor of the external magnetic field and its dual

$$
\varphi_{\alpha \beta}=\frac{F_{\alpha \beta}}{B}, \quad \tilde{\varphi}_{\alpha \beta}=\frac{1}{2} \varepsilon_{\alpha \beta \rho \sigma} \varphi^{\rho \sigma}
$$

- Arbitrary four-vector $a^{\mu}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ can be decomposed into two orthogonal components

$$
a_{\mu}=\tilde{\Lambda}_{\mu \nu} a^{\nu}-\Lambda_{\mu \nu} a^{\nu}=a_{\| \mu}-a_{\perp \mu}
$$

- For the scalar product of two four-vectors one has

$$
\begin{gathered}
(a b)=(a b)_{\|}-(a b)_{\perp} \\
(a b)_{\|}=(a \tilde{\Lambda} b)=a^{\mu} \tilde{\Lambda}_{\mu \nu} b^{\nu}, \quad(a b)_{\perp}=(a \wedge b)=a^{\mu} \Lambda_{\mu \bar{\nu}} b^{\nu}
\end{gathered}
$$

Orthogonal Basis Motivated by Magnetic Field

- Correlators having rank non-equal to zero, could be decomposed in some orthogonal set of vectors
- In magnetic field, such a basis naturally exists

$$
\begin{aligned}
& b_{\mu}^{(1)}=(q \varphi)_{\mu}, \quad b_{\mu}^{(2)}=(q \tilde{\varphi})_{\mu} \\
& b_{\mu}^{(3)}=q^{2}(\wedge q)_{\mu}-(q \wedge q) q_{\mu}, \quad b_{\mu}^{(4)}=q_{\mu}
\end{aligned}
$$

- Arbitrary vector a_{μ} can be presented as

$$
a_{\mu}=\sum_{i=1}^{4} a_{i} \frac{b_{\mu}^{(i)}}{\left(b^{(i)} b^{(i)}\right)}, \quad a_{i}=a^{\mu} b_{\mu}^{(i)}
$$

- Third-rank tensor $T_{\mu \nu \rho}$ can be decomposed similarly

$$
\begin{gathered}
T_{\mu \nu \rho}=\sum_{i, j, k=1}^{4} T_{i j k} \frac{b_{\mu}^{(i)} b_{\nu}^{(j)} b_{\rho}^{(k)}}{\left(b^{(i)} b^{(i)}\right)\left(b^{(j)} b^{(j)}\right)\left(b^{(k)} b^{(k)}\right)}, \\
T_{i j k}=T^{\mu \nu \rho} b_{\mu}^{(i)} b_{\nu}^{(j)} b_{\rho}^{(k)}
\end{gathered}
$$

Photon Polarization Operator in Magnetic Field

- $\Pi^{(\lambda)}(q)$ are eigenvalues of the photon polarization operator

$$
\mathcal{P}_{\mu \nu}(q)=\sum_{\lambda=1}^{3} \frac{b_{\mu}^{(\lambda)} b_{\nu}^{(\lambda)}}{\left(b^{(\lambda)}\right)^{2}} \Pi^{(\lambda)}(q)
$$

- In vacuum, $\mathcal{P}_{\mu \nu}(q)$ has two physical eigenmodes
- In an external constant homogeneous magnetic field, the number of physical eigenmodes is the same
- Eigenvectors are determined by the field strength tensor

$$
\varepsilon_{\mu}^{(1)}=b_{\mu}^{(1)} / \sqrt{q_{\perp}^{2}}, \quad \varepsilon_{\mu}^{(2)}=b_{\mu}^{(2)} / \sqrt{q_{\|}^{2}}
$$

- In the magnetic field, $\Pi^{(\lambda)}(q)$ contains both vacuum and field-induced parts (for electron)

$$
\Pi^{(\lambda)}(q)=-i \mathcal{P}\left(q^{2}\right)-\frac{\alpha}{\pi} Y_{V V}^{(\lambda)}
$$

- Details on $Y_{V V}^{(\lambda)}$ can be found in A. Kuznetsov \& N. Mikheev, Electroweak Processes in External Electromagnetic Fields (Springer, 2013)

Inclusion of Fermion AMM

- Models beyond the SM can produce effective operators at current energies and Pauli Lagrangian density, in particular

$$
\mathcal{L}_{\mathrm{AMM}}(x)=-\frac{\mu_{f}}{2}\left[\bar{f}(x) \sigma_{\mu \nu} f(x)\right] F^{\mu \nu}(x)
$$

- For electron, the coupling can be written as $\mu_{e}=\mu_{B} a_{e}$, where $\mu_{B}=e /\left(2 m_{e}\right)$ is Bohr magneton and a_{e} is electron AMM
- Total Lagrangian of interaction

$$
\mathcal{L}_{\mathrm{int}}(x)=\mathcal{L}_{\mathrm{QED}}(x)+\mathcal{L}_{\mathrm{AMM}}(x)
$$

- It gives additional contribution to the polarization operator
- Contribution linear in AMM is related with correlator of vector and tensor currents, $\Pi_{\mu \nu \rho}^{(V T)}$
- Contribution quadratic in AMM is determined by correlator of two tensor currents, $\Pi_{\mu \nu \rho \sigma}^{(T T)}$

Introduction: General Case of Two-Point Correlator

$$
\text { [M. Yu. Borovkov et al., Phys. At. Nucl. } 62 \text { (1999) 1601] }
$$

- Lagrangian density of local fermion interaction

$$
\mathcal{L}_{\mathrm{int}}(x)=\left[\bar{f}(x) \Gamma^{A} f(x)\right] J_{A}(x)
$$

- J_{A} - generalized current (photon, neutrino current, etc.)
- Γ_{A} - any of γ-matrices from the set $\left\{1, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}, \sigma_{\mu \nu}=i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2\right\}$
- Interaction constants are included into the current J_{A}

Introduction: General Case of Two-Point Correlator

- Two-point correlation function of general form

$$
\Pi_{A B}=\int d^{4} X \mathrm{e}^{-i(q X)} \operatorname{Sp}\left\{S_{\mathrm{F}}(-X) \Gamma_{A} S_{\mathrm{F}}(X) \Gamma_{B}\right\}
$$

- $S_{F}(X)$ - gauge and translationally invariant part of the fermion propagator
- $X^{\mu}=x^{\mu}-y^{\mu}$ - integration variable
- Correlations of scalar, pseudoscalar, vector and axial-vector currents were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]
- Consider correlations of a tensor current with the other ones

Propagator in the Fock-Schwinger Representation

- General representation of the propagator in magnetic field [J.S. Schwinger, Phys. Rev. 82 (1951) 664]

$$
G_{\mathrm{F}}(x, y)=\mathrm{e}^{i \Omega(x, y)} S_{\mathrm{F}}(x-y)
$$

- Gauge non-invariant phase factor

$$
\Omega(x, y)=-e Q_{f} \int_{y}^{x} d \xi^{\mu}\left[A_{\mu}(\xi)+\frac{1}{2} F_{\mu \nu}(\xi-y)^{\nu}\right]
$$

- In two-point correlation function phase factors cancel

$$
\Omega(x, y)+\Omega(y, x)=0
$$

- Gauge and translationally invariant part of the fermion propagator $\left(\beta=e B Q_{f}\right)$

$$
\begin{aligned}
S_{\mathrm{F}}(X) & =-\frac{i \beta}{2(4 \pi)^{2}} \int_{0}^{\infty} \frac{d s}{s^{2}}\left\{(X \tilde{\Lambda} \gamma) \cot (\beta s)-i(X \widetilde{\varphi} \gamma) \gamma_{5}-\right. \\
& \left.-\frac{\beta s}{\sin ^{2}(\beta s)}(X \Lambda \gamma)+m_{f} s[2 \cot (\beta s)+(\gamma \varphi \gamma)]\right\} \times \\
& \times \exp \left(-i\left[m_{f}^{2} s+\frac{1}{4 s}(X \tilde{\Lambda} X)-\frac{\beta \cot (\beta s)}{4}(X \Lambda X)\right]\right)
\end{aligned}
$$

Correlator of Vector and Tensor Currents

- Correlator of vector and tensor currents is rank-3 tensor
- Vector-current conservation and anti-symmetry of the tensor current reduce the number of independent coefficients in the basis decomposition to 18
- Of them, four coefficients only are non-trivial
- Double-integral representation of coefficients is used

$$
\begin{aligned}
& \Pi_{i j k}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta\right)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j k}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
& \quad \times \exp \left\{-i\left[m_{f}^{2} t-\frac{q_{\|}^{2}}{4} t\left(1-u^{2}\right)+q_{\perp}^{2} \frac{\cos (\beta t u)-\cos (\beta t)}{2 \beta \sin (\beta t)}\right]\right\}
\end{aligned}
$$

- Integration variables and relation between momenta squared $t=s_{1}+s_{2}, u=\left(s_{1}-s_{2}\right) /\left(s_{1}+s_{2}\right) ; \quad q_{\|}^{2}=q^{2}+q_{\perp}^{2}$

Integrands of Vector-Tensor Correlator

$$
\begin{gathered}
Y_{114}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{141}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-m_{f} q_{\perp}^{2} q^{2} \frac{\beta t \cos (\beta t u)}{\sin (\beta t)} \\
Y_{223}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{232}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
=m_{f} q_{\perp}^{2}\left(q_{\|}^{2}\right)^{2} \frac{\beta t}{\sin (\beta t)}[\cos (\beta t)-\cos (\beta t u)] \\
Y_{224}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{242}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
=m_{f} q_{\|}^{2} \frac{\beta t}{\sin (\beta t)}\left[q_{\perp}^{2} \cos (\beta t)-q_{\|}^{2} \cos (\beta t u)\right] \\
Y_{334}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{343}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-m_{f} q_{\perp}^{2} q_{\|}^{2}\left(q^{2}\right)^{2} \frac{\beta t \cos (\beta t u)}{\sin (\beta t)}
\end{gathered}
$$

- Choice of basic vectors is optimal because of vector current conservation
- $Y_{4 j k}^{(\mathrm{VT})}$ vanish in this basis
- Anti-symmetry in the last two indices is due to antisymmetric tensor current

Correlator of Two Tensor Currents

- Correlator of two tensor currents is rank-4 tensor
- Anti-symmetry of the tensor currents reduce the number of independent coefficients in the basis decomposition to 36
- Of them, eight coefficients only are non-trivial
- Double-integral representation of coefficients is used

$$
\begin{aligned}
& \Pi_{i j k l}^{(\mathrm{TT})}\left(q^{2}, q_{\perp}^{2}, \beta\right)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j k l}^{(\mathrm{TT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
& \quad \times \exp \left\{-i\left[m_{f}^{2} t-\frac{q_{\|}^{2}}{4} t\left(1-u^{2}\right)+q_{\perp}^{2} \frac{\cos (\beta t u)-\cos (\beta t)}{2 \beta \sin (\beta t)}\right]\right\}
\end{aligned}
$$

Integrands of Tensor-Tensor Correlator

$$
\begin{array}{r}
Y_{1414}^{(\mathrm{TT})}\left(q_{\|}^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-q_{\|}^{2}\left\{2 q_{\perp}^{2}\left(q_{\perp}^{2}+q_{\|}^{2}\right) \frac{\cos (\beta t)-\cos (\beta t u)}{\sin ^{2}(\beta t)}\right. \\
+4 q_{\perp}^{2} q_{\|}^{2}[\cos (\beta t u)-u \sin (\beta t u) \cot (\beta t)]-q_{\|}^{2}\left[\left(1-u^{2}\right) q_{\|}^{2}+4 m_{f}^{2}\right] \cos (\beta t u) \\
\left.-q_{\perp}^{2}\left[\left(1-u^{2}\right) q_{\|}^{2}-4 m_{f}^{2}\right] \cos (\beta t)+\frac{4 i}{t} q_{\|}^{2}\left[\cos (\beta t)-\frac{\beta t}{\sin (\beta t)}\right]\right\} \\
Y_{2424}^{(\mathrm{TT})}\left(q_{\|}^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-q_{\|}^{2}\left\{2 q _ { \perp } ^ { 2 } \left(q_{\perp}^{2}+q_{\|}^{2} \cos (\beta t)-\cos (\beta t u)\right.\right. \\
\sin ^{2}(\beta t) \\
+4 q_{\perp}^{2} q_{\|}^{2}[\cos (\beta t u)-u \sin (\beta t u) \cot (\beta t)]-q_{\|}^{2}\left[\left(1-u^{2}\right) q_{\|}^{2}+4 m_{f}^{2}\right] \cos (\beta t u) \\
\left.-q_{\perp}^{2}\left[\left(1-u^{2}\right) q_{\|}^{2}-4 m_{f}^{2}\right] \cos (\beta t)+\frac{4 i}{t} q_{\|}^{2}\left[\cos (\beta t)-\frac{\beta t}{\sin (\beta t)}\right]\right\}
\end{array}
$$

- The other coefficients will be presented in a forthcoming paper

AMM Contribution to Photon Polarization Operator

- Field-induced part of $\Pi^{(\lambda)}(q)$ is modified (for electrons)

$$
\Pi^{(\lambda)}(q)=-i \mathcal{P}\left(q^{2}\right)-\frac{\alpha}{\pi} Y_{V V}^{(\lambda)}+\frac{\alpha}{\pi} a_{e} Y_{V T}^{(\lambda)}+\frac{\alpha}{\pi} a_{e}^{2} Y_{T T}^{(\lambda)}
$$

- Last two terms can be presented in the form of double integral

$$
Y_{V T(T T)}^{(\lambda)}=\int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u\left\{\frac{\beta t}{\sin (\beta t)} y_{V T(T T)}^{(\lambda)} e^{-i \Omega}-q^{2} e^{-i \Omega_{0}}\right\}
$$

- Notations are from the book by A. Kuznetsov and N. Mikheev
- Part independent on the field is subtracted
- Integrands of vector-tensor part are as follows

$$
\begin{aligned}
& y_{V T}^{(1)}=y_{V T}^{(3)}=q^{2} \cos (\beta t u) \\
& y_{V T}^{(2)}=q_{\|}^{2} \cos (\beta t u)-q_{\perp}^{2} \cos (\beta t)
\end{aligned}
$$

- For the electron, $a_{e} \sim \alpha$ and the AMM correction is small

AMM Contribution to Photon Polarization Operator

- Integrands of tensor-tensor part

$$
y_{T T}^{(1)}=\frac{Y_{1414}^{(T T)}}{4 m_{e}^{2} q_{\perp}^{2}}, \quad y_{T T}^{(2)}=\frac{Y_{2424}^{(T T)}}{4 m_{e}^{2} q_{\|}^{2}}
$$

- For the electron, the tensor-tensor term gives α-suppressed correction to the vector-tensor term

Conclusions

- Two-point correlators in presence of constant homogeneous external magnetic field are considered
- This analysis extended the previous one by inclusion of tensor current into consideration
- Study of correlators of tensor fermionic current with the others allows to investigate effects of the fermion anomalous magnetic moment in the one-loop approximation
- Field-induced contribution to the photon polarization operator linear and quadratic in electron anomalous magnetic moment are calculated
- Computer technique developed for two-point correlators is planned to be applied for three-point ones

Backup Slides

Crossed-Field Limit

- Pure field invariant vanishes $\quad(\beta \rightarrow 0)$
- As basic vectors, accept the following orthonormalized set

$$
\begin{aligned}
& b_{\mu}^{(1)}=\frac{e Q_{f}}{\chi_{f}}(q F)_{\mu}, \quad b_{\mu}^{(2)}=\frac{e Q_{f}}{\chi_{f}}(q \tilde{F})_{\mu} \\
& b_{\mu}^{(3)}=\frac{e^{2} Q_{f}^{2}}{\chi_{f}^{2} \sqrt{q^{2}}}\left[q^{2}(q F F)_{\mu}-(q F F q) q_{\mu}\right], \quad b_{\mu}^{(4)}=\frac{q_{\mu}}{\sqrt{q^{2}}}
\end{aligned}
$$

- Dynamical parameter: $\quad \chi_{f}^{2}=e^{2} Q_{f}^{2}(q F F q)=\beta^{2} q_{\perp}^{2}$
- Coefficients of the vector-tensor correlator in this basis:

$$
\begin{aligned}
& \Pi_{i j k}^{(V T)}\left(q^{2}, \chi_{f}\right)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j k}^{(V T)}\left(q^{2}, \chi_{f} ; t, u\right) \\
& \times \exp \left\{-i\left[\left(m_{f}^{2}-\frac{q^{2}}{4}\left(1-u^{2}\right)\right) t+\frac{1}{48} \chi_{f}^{2}\left(1-u^{2}\right)^{2} t^{3}\right]\right\}
\end{aligned}
$$

Vector-Tensor Correlator Integrands in Crossed Fields

- Results for integrands in external electromagnetic crossed fields

$$
\begin{aligned}
& Y_{114}^{(\mathrm{VT})}=-Y_{141}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}} \\
& Y_{223}^{(\mathrm{VT})}=-Y_{232}^{(\mathrm{VT})}=m_{f} \frac{\chi_{f}^{2} t^{2}}{2 \sqrt{q^{2}}}\left(1-u^{2}\right) \\
& Y_{224}^{(\mathrm{VT})}=-Y_{242}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}}\left[1+\frac{\chi_{f}^{2} t^{2}}{2 q^{2}}\left(1-u^{2}\right)\right] \\
& Y_{334}^{(\mathrm{VT})}=-Y_{343}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}}
\end{aligned}
$$

