"Fully-heavy tetraquarks in t relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

"Fully-heavy tetraquarks in the relativistic diquark-antidiquark picture"

Elena M. Savchenko

Federal Research Center "Computer Science and Control", Russian Academy of Sciences; Department of Quantum Theory and High Energy Physics, M.V.Lomonosov Moscow State University

in collaboration with R.N. Faustov and V.O. Galkin

The 6th international conference on particle physics and astrophysics, December 1, 2022

Introduction

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

- Ordinary hadrons: baryons qqq and mesons $q\bar{q}$.
- Exotic hadrons: tetraquarks $qq\bar{q}\bar{q}$, pentaquarks $qqqq\bar{q}$, etc.

■ Searches for the *X*_{ccccc}, *X*_{bbbb} are conducted on the Large Hadron Collider (LHC) by the LHCb and CMS Collaborations.

Model description

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model descriptior

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

- $M_c = 1.55 \text{ GeV}, M_b = 4.88 \text{ GeV}.$
- We consider symmetric quark content: $cc\bar{c}\bar{c}, cb\bar{c}\bar{b}, bb\bar{b}\bar{b}.$
- Diquark QQ' antidiquark $\overline{Q}\overline{Q}'$ bound state.
- Ground state (anti)diquarks can be in scalar
 - J = 0 (S) or axialvector J = 1 (A) state.
- ccccc, bbbb can contain only axialvector
 (anti)diquarks, cbcb can contain both types of
 (anti)diquarks.

Relativistic diquark-antidiquark model I

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M.

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experiment data

Conclusion

Publications

Relativistic Schrödinger-type quasipotential equation:

$$\left(\frac{b^2(M)}{2\mu_R(M)} - \frac{\mathbf{p}^2}{2\mu_R(M)}\right)\Psi_{T,d}(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} V(\mathbf{p},\mathbf{q};M)\Psi_{T,d}(\mathbf{q})$$

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

Relativistic diquark-antidiquark model II

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M.

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Publications

Quark-quark interaction quasipotential:

$$V(\mathbf{p}, \mathbf{q}; M) = \overline{u}_1(p)\overline{u}_2(-p)\mathcal{V}(\mathbf{p}, \mathbf{q}; M)u_1(q)u_2(-q)$$
$$\mathcal{V}(\mathbf{p}, \mathbf{q}; M) = \frac{1}{2} \left[\frac{4}{3} \alpha_s D_{\mu\nu}(\mathbf{k}) \gamma_1^{\mu} \gamma_2^{\nu} + V_{\text{conf.}}^V(\mathbf{k}) \Gamma_1^{\mu}(\mathbf{k}) \Gamma_{2;\mu}(-\mathbf{k}) + V_{\text{conf.}}^S(\mathbf{k}) \right]$$

Diquark-antidiquark interaction quasipotential:

$$V(\mathbf{p},\mathbf{q};M) = \frac{\langle d(\mathcal{P})|J_{\mu}|d(\mathcal{Q}) \rangle}{2\sqrt{E_d}\sqrt{E_d}} \frac{4}{3} \alpha_s D^{\mu\nu}(\mathbf{k}) \frac{\langle d'(\mathcal{P}')|J_{\nu}|d'(\mathcal{Q}') \rangle}{2\sqrt{E_{d'}}\sqrt{E_{d'}}}$$

 $+ \Psi_d^*(\mathcal{P})\Psi_{d'}^*(\mathcal{P}')[J_{d;\mu}J_{d'}^{\mu}V_{\text{conf.}}^V(\mathbf{k}) + V_{\text{conf.}}^S(\mathbf{k})]\Psi_d(\mathcal{Q})\Psi_{d'}(\mathcal{Q}')$

Relativistic diquark-antidiquark model III

V

Diquark-antidiquark interaction quasipotential in configuration space:

$$\begin{split} \mathbf{r}(r) &= \left[\mathbf{v}_{\text{Coul.}}(r) + \mathbf{v}_{\text{conf.}}(r) + \frac{1}{E_{1}E_{2}} \left\{ \mathbf{p} \left[\mathbf{v}_{\text{Coul.}}(r) + \mathbf{v}_{\text{conf.}}^{V}(r) \right] \mathbf{p} - \frac{1}{4} \Delta \mathbf{v}_{\text{conf.}}^{V}(r) + \mathbf{v}_{\text{Coul.}}^{V}(r) \frac{\mathbf{L}^{2}}{2r} \right\} \right] a \\ &+ \left[\left\{ \frac{1}{2} \left[\frac{1}{E_{1}(E_{1} + M_{1})} + \frac{1}{E_{2}(E_{2} + M_{2})} \right] \frac{\mathbf{v}_{\text{coul.}}^{\prime}(r)}{r} - \frac{1}{2} \left[\frac{1}{M_{1}(E_{1} + M_{1})} + \frac{1}{M_{2}(E_{2} + M_{2})} \right] \frac{\mathbf{v}_{\text{conf.}}^{\prime}(r)}{r} \right] \\ &+ \frac{\mu_{d}}{4} \left[\frac{1}{M_{1}^{2}} + \frac{1}{M_{2}^{2}} \right] \frac{\mathbf{v}_{\text{conf.}}^{\prime}(r)}{r} + \frac{1}{E_{1}E_{2}} \left[\mathbf{v}_{\text{Coul.}}^{\prime}(r) + \frac{\mu_{d}}{4} \left(\frac{E_{1}}{M_{1}} + \frac{E_{2}}{M_{2}} \right) \mathbf{v}_{\text{conf.}}^{\prime}(r) \right] \frac{1}{r} \right\} \mathbf{L}(\mathbf{S}_{1} + \mathbf{S}_{2}) \\ &+ \left\{ \frac{1}{2} \left[\frac{1}{E_{1}(E_{1} + M_{1})} - \frac{1}{E_{2}(E_{2} + M_{2})} \right] \frac{\mathbf{v}_{\text{coul.}}^{\prime}(r)}{r} - \frac{1}{2} \left[\frac{1}{M_{1}(E_{1} + M_{1})} - \frac{1}{M_{2}(E_{2} + M_{2})} \right] \frac{\mathbf{v}_{\text{conf.}}^{\prime}(r)}{r} \right] \\ &+ \frac{\mu_{d}}{4} \left[\frac{1}{M_{1}^{2}} - \frac{1}{M_{2}^{2}} \right] \frac{\mathbf{v}_{\text{conf.}}^{\prime}(r)}{r} + \frac{1}{E_{1}E_{2}} \frac{\mu_{d}}{4} \left(\frac{E_{1}}{M_{1}} - \frac{E_{2}}{M_{2}} \right) \frac{\mathbf{v}_{\text{conf.}}^{\prime}(r)}{r} \right\} \mathbf{L}(\mathbf{S}_{1} - \mathbf{S}_{2}) \\ &+ \left[\frac{1}{3E_{1}E_{2}} \left\{ \frac{1}{r} \mathbf{v}_{\text{coul.}}^{\prime}(r) - \mathbf{v}_{\text{coul.}}^{\prime}(r) + \frac{\mu_{d}^{2}}{4} \frac{E_{1}E_{2}}{M_{1}M_{2}} \left(\frac{1}{r} \mathbf{v}_{\text{conf.}}^{\prime}(r) - \mathbf{v}_{\text{conf.}}^{\prime\prime}(r) \right) \right\} \mathbf{x} \left[\frac{3}{r^{2}} \left(\mathbf{S}_{1}\mathbf{r} \right) \left(\mathbf{S}_{2}\mathbf{r} \right) - \mathbf{S}_{1}\mathbf{S}_{2} \right] \\ &+ \left[\frac{2}{3E_{1}E_{2}} \left\{ \Delta \mathbf{v}_{\text{Coul.}}(r) + \frac{\mu_{d}^{2}}{4} \frac{E_{1}E_{2}}{M_{1}M_{2}} \Delta \mathbf{v}_{\text{conf.}}^{\prime}(r) \right\} \mathbf{S}_{1}\mathbf{S}_{2} \right] d \\ \end{aligned}$$

 $4 M_1 M_2$

6/17

c

Results for the $X_{cc\bar{c}\bar{c}}$, $X_{bb\bar{b}\bar{b}}$

Table 1: Masses $M_{QQ'\bar{Q}Q'}$ of the ground (1S) and excited (1P, 2S, 1D, 2P, 3S) $cc\bar{cc}$ and $bb\bar{b}\bar{b}$ states. d and \bar{d}' are the axialvector (A) or scalar (S) diquark and antidiquark, respectively. S is the total spin of the diquark-antidiquark system. All masses are given in MeV.

-

dī ′	nL	nr	L	s	J	JPC	М
				0	0	0++	6190
	15	0	0	1	1	1+-	6271
				2	2	2++	6367
				0	1	1	6631
					0	0-+	6628
				1	1	1-+	6634
	1P	0	1		2	2-+	6644
					1	1	6635
				2	2	2	6648
					3	3	6664
				0	0	0++	6782
	2S	1	0	1	1	1+-	6816
				2	2	2++	6868
				0	2	2++	6921
				1	1	1+-	6909
47					2	2+-	6920
AA					3	2 + 692 3+- 693 0++ 680	6932
	ID	0	2	2	0	0++	6899
					1	1++	6904
					2	2++	6915
					3	3++	6929
					4	4++	6945
				0	1	1	7091
					0	0-+	7100
				1	1	1-+	7099
	2P	1	1		2	2-+	7098
					1	1	7113
				2	2	2	7113
					3	3	7112
				0	0	0++	7259
	38	2	0	1	1	1+-	7287
				2	2	2++	7333

dī⁄	nL	nr	L	s	J	JPC	М	
				0	0	0++	19315	
	15	0	0	1	1	1+-	19320	
				2	2	2++	19331	
				0	1	1	19536	
					0	0-+	19533	
				1	1	1-+	19535	
	1P	0	1		2	2-+	19539	
					1	1	19534	
				2	2	2	19538	
					3	3	19545	
	-			0	0	0++	19680	
	2S	1	0	1	1	1+-	19682	
				2	2	2++	19687	
				0	2	2++ 19715		
			1 -	1	1+-	19710		
47				1 2	2	2+-	19714	
AA					3+-	19720		
	1D	0	2	2	0	0++	19705	
					1	1++	19707	
					2	2++	19711	
					3	3++	19717	
					4	4++	19724	
				0	1	1	19820	
					0	$^{0-+}$	19821	
				1	1	1-+	19821	
	2P	1	1		2	2-+	19822	
					1	1	19823	
				2	2	2	19823	
					3	3	19824	
				0	0	0++	19941	
	38	2	0	1	1	1+-	19943	
			4.6	2	2	2++	19947	

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark

Results

Threshole analysis

Experimenta data

Conclusion

Results for the $X_{cb\bar{c}\bar{b}}$

Table 2: Masses $M_{QQ'\bar{Q}\bar{Q}'}$ of the ground (1S) and excited (1P, 2S, 1D, 2P, 3S) $cb\bar{c}\bar{b}$ states. d and \bar{d}' are the axialvector (A) or scalar (S) diquark and antidiquark, respectively. S is the total spin of the diquark-antidiquark system. All masses are given in MeV.

$d\overline{d}^{\prime}$	nL	nr	L	s	J	JPC	м				
				0	0	0++	12838				
	1S	0	0	1	1	1+-	12855				
				2	2	2++	12883				
				0	1	1	13103				
					0	0-+	13100				
				1	1	1-+	13103				
	1P	0	1		2	2-+	13108				
					1	1	13103				
				2	2	2	13109				
					3	3	13116				
				0	0	0++	13247				
	28	1	0	1	1	1+-	13256				
				2	2	2++	13272				
_				0	2	2++	13306				
				1	1	1+-	13299				
44					2	2+-	13304				
77					3	3+-	13311				
	1D	0	2	2	0	0++	13293				
					1	1++	13296				
					2	2++	13301				
					3	3++	13308				
					4	4++	13317				
				0	1	1	13428				
					0	0-+	13431				
				1	1	1-+	13431				
	2P	1	1		2	2-+	13431				
					1	1	13434				
				2	2	2	13435				
					3	3	13436				
				0	0	0++	13558				
	3S	2	0	1	1	1+-	13566				
				2	2	2++	13580				

dd′	nL	nr	L	s	J	JPC	М
	15	0	0		1	$_1+\pm$	12863
$\frac{1}{\sqrt{2}}\left(A\bar{S}\pm S\bar{A}\right)$				-	0	0-±	13096
	1P	0	1		1	1-±	13099
					2	2-±	13104
	2S	1	0	-	1	1++	13257
	ID	0	2	1	1	1+Ŧ	13293
					2	2+±	13298
					3	3+±	13305
				-	0	0-±	13426
	2P	1	1		1	1-+	13426
					2	2-±	13427
	3S	2	0	-	1	1++	13566
	1S	0	0		0	0++	12856
	lP	0	1	-	1	1	13095
a	2S	1	0	-	0	0++	13250
33	1D	0	2	- 0	2	2++	13293
	2P	1	1	-	1	1	13420
	3S	2	0		0	0++	13559

"Fully-heavy traquarks in the relativistic diquarkantidiquark picture" Elena M.

_

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Threshold analysis I

$$\Delta = M_{QQ'\bar{Q}\bar{Q}'} - M_{\text{threshold}}$$

• Many masses lie well above thresholds with $\Delta > 300$ MeV.

- Significant amount of masses lie in the $100 < \Delta < 300$ MeV interval.
- Few masses lie in the $0 < \Delta < 100$ MeV interval.
- Such behavior is seen across all excitations and all quark compositions.

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Threshold analysis II

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M.

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

Example:

Table 3: Masses *M* of the ground (1S) and excited (2S, 1D) $cb\bar{c}b$ states composed from the axialvector diquarks and the corresponding meson-meson thresholds. *d* and \vec{d}' are the axialvector (A) or scalar (S) diquark and antidiquark, respectively. *S* is the total spin of the diquark-antidiquark system. M_{thr} is the corresponding meson-meson threshold. Δ is the difference between the tetraquark mass and threshold: $\Delta = M - M_{thr}$. All masses are given in MeV.

$QQ\overline{Q}\overline{Q}'$	dd′	nL	s	JPC	М	M _{thr}	Δ	Meson pair
		0	$^{0++}$	12838	12383	455	$\eta_c(1S)\eta_b(1S)$	
		1S	1	1+-	12855	12444	411	$\eta_c(1S)\Upsilon(1S)$
			2	2++	12883	12557	326	$J/\psi(1S)\Upsilon(1S)$
			0	$^{0++}$	13247	12383	864	$\eta_c(1S)\eta_b(1S)$
		2S	1	1+-	13256	12444	812	$\eta_c(1S)\Upsilon(1S)$
			2	2++	13272	12557	715	$J/\psi(1S)\Upsilon(1S)$
7 .7		0	2++	13306	12557	749	$J/\psi(1S)\Upsilon(1S)$	
			1^{+-}	13299	12444	855	$\eta_c(1S)\Upsilon(1S)$	
			a+-	12204	13148	156	$\eta_c(1S)\Upsilon_2(1D)$	
CDCD	AA		1	2 '	15504	13222	82	$\psi_2(3823)\eta_b(1S)$
				3+-	13311	13241	70	$\psi_3(3842)\eta_b(1S)$
		1D		$^{0++}$	13293	12383	910	$\eta_c(1S)\eta_b(1S)$
		ID		1++	13296	12557	739	$J/\psi(1S)\Upsilon(1S)$
				2++	13301	12557	744	$J/\psi(1S)\Upsilon(1S)$
			2			13261	47	$J/\psi(1S)\Upsilon_2(1D)$
				3++	13308	13284	24	$\psi_2(3823)\Upsilon(1S)$
						13303	5	$\psi_3(3842)\Upsilon(1S)$
				4++	13317	13303	14	$\psi_3(3842)\Upsilon(1S)$
						4.0		

≡ ୬۹୯ 10/17

Threshold analysis: bottom

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M.

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

The only exceptions are the two $X_{bb\bar{b}\bar{b}}$ states lying approximately 100 MeV below any possible threshold:

Table 4: Tetraquark states lying under fall-apart thresholds.

$X_{QQ'QQ'}$	nL	S	JPC	M, MeV	Δ , MeV	threshold
Y	1D	1	3+-	19720	-92	$h_b(1P)\chi_{b2}(1P)$
Abbbb	ID	2	4++	19724	-100	$\chi_{b2}(1P)\chi_{b2}(1P)$

The fall-apart decays into a pair of heavy mesons are forbidden, thus they can be narrow states.

Experimental data I

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimental data

Conclusion

- In 2020 the LHCb Collaboration announced the discovery of the narrow resonance X(6900).
- Several other broad structures peaking at about
 6.4 and 7.2 GeV were reported.
- In 2022 CMS and ATLAS Collaborations presented preliminary data confirming X(6900) and giving hints of few more states including structures at 6.4 and 7.2 GeV.

Experimental data II

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Sawchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

Current observation status and our predictions:

Table 5: Exotic X states observed by the LHCb, CMS and ATLAS Collaborations in di- J/ψ invariant mass spectra and our candidates. All masses are given in MeV.

G II I <i>I</i>	G ()		M M.X7			Our candidates					
Collaboration	State	Mass, Mev	width, Mev	nL	s	JPC	Mass, MeV				
ATLAS	X(6200)	$6220 \pm 50^{+40}_{-50}$	$310 \pm 120^{+70}_{-80}$	1S	0	0++	6190				
LHCb	X(6400)	≈ 6400		1S	2	2++	6367				
CMS	V(6600)	$6552\pm10\pm12$	$124\pm29\pm34$	1S	2	2++	6367				
ATLAS	X(6600)	$6620 \pm 30^{+20}_{-10}$	$310 \pm 90^{+60}_{-110}$	28	0	$^{0++}$	6782				
LUCI	U.C.	$6905\pm11\pm7$	$80\pm19\pm33$	2S	2	2++	6868				
LHCD		$6886 \pm 11 \pm 11$	$168\pm33\pm69$	1D	0	2++	6921				
CME	X(6900)	(027 0 5	100 00 10	1D	2	0^{++}	6899				
CMS		$6927 \pm 9 \pm 5$	$122 \pm 22 \pm 19$	1D	2	1^{++}	6904				
ATLAS		$6870 \pm 30^{+60}_{-10}$	$120 \pm 40^{+30}_{-10}$	1D	2	2^{++}	6915				
LHCb	V(7200)	≈ 7200		20	0	o++	7250				
ATLAS	• X(7200)	$7220 \pm 30^{+20}_{-30}$	$100^{+130+60}_{-70-50}$	- 38	0	0 · ·	7259				
CMS	V(7200)	7297 10 5	05 46 20	3S	0	0++	7259				
CMS	X(7300)	1281 ± 19 ± 5	$95 \pm 46 \pm 20$	3S	2	2^{++}	7333				

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Conclusion I

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

 Masses of ground and excited states of fully-heavy tetraquarks were calculated.

The finite diquark size was taken into account.

Conclusion II

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model descriptior

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

The predicted masses are consistent with the results of experimental searches for the $X_{bb\bar{b}\bar{b}}$ state by the LHC and CMS (which found nothing).

• However, the two $X_{bb\bar{b}\bar{b}}$ excitations can still be narrow states.

Conclusion III

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

 Masses of resonances in the di-J/ψ production detected at the LHCb, CMS and ATLAS agree with our predictions for the ground and excited X_{ccccc̄} states.

 Tetraquark states which are most convenient for the experimental detection are identified.

Publications

"Fully-heavy tetraquarks in th relativistic diquarkantidiquark picture" Elena M. Savchenko

Introduction

Model description

Relativistic diquarkantidiquark model

Results

Threshold analysis

Experimenta data

Conclusion

Publications

- This talk is based on the following publications:
 Masses of the QQQQ tetraquarks in the relativistic diquark-antidiquark picture, Physical Review D, 2020, vol. 102, № 11, p. 114030;
 - Heavy Tetraquarks in the Relativistic Quark Model, Universe, 2021, vol. 7, № 4, p. 94;
 - Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry, 2022, vol. 14, № 12, p. 2504.