A non-minimal approximation of the type I see-saw

E. Fedotova in collaboration with M. Dubinin

```
SINP MSU
```

The 6th international conference on particle physics and astrophysics (ICPPA2022)
National Research Nuclear University MEPhI

November, 29 - December, 2
Moscow, Russia

SM can not solve

- the problem of neutrino masses
- the DM problem
- the problem of baryon asymmetry in the Universe (BAU)

The most economical and natural way to solve them is to extend the SM with three right-handed neutrinos (HNL, sterile neutrinos, gauge-singlet fermions)

- the symmetry between right- and left-handed neutrinos is restored
- no new physical principles and symmetries are needed
- no new energy scales (in the $\nu \mathrm{MSM}$)
- the smallness of m_{ν} by seesaw mechanism (type I) and neutrino oscillations
- BAU
E. Fedotova in collaboration with M. Dubinin
- Experimentally observed neutrino oscillations consequence on nonzero neutrino masses
- the smallness of their masses

Normal	$\left\|\Delta m_{A M M}^{2}\right\| \approx 2.4 \times 10^{-3} \mathrm{ev}^{2}$	Inverted
Ordering	$\Delta m_{\text {SOL }}^{2} \approx+7.6 \times 10^{-5} \mathrm{ev}^{2}$	Ordering

1602.04816

The dynamical mechanism behind the neutrino masses are not known

$\nu \mathrm{MSM}: \mathcal{O}(\mathrm{eV})<M_{I} \leq m_{H}$

Lagrangian

Flavour basis

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{S M}+i \bar{\nu}_{R} \partial_{\mu} \gamma^{\mu} \nu_{R}-\left(Y \bar{l}_{L} \nu_{R} \tilde{H}+\frac{M_{M}}{2} \bar{\nu}^{c} \nu_{R}+h . c\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
l_{L}=\binom{\nu_{L}}{e_{L}}, \quad \tilde{H}=\epsilon_{i j} H^{\dagger} \tag{2}
\end{equation*}
$$

Spontaneous EW-symmetry breaking

$$
\frac{1}{2}\left(\bar{\nu}_{L}{\overline{\nu^{c}}}_{R}\right)\left(\begin{array}{cc}
0 & M_{D} \tag{3}\\
M_{D}^{T} & M_{M}
\end{array}\right)\binom{\nu_{L}^{c}}{\nu_{R}}
$$

where $M_{D}=Y\langle H\rangle$ - Dirac mass matrix
Mass basis

$$
\mathcal{U}^{\dagger} \mathcal{M U}^{*}=\left(\begin{array}{cc}
\hat{m} & 0 \tag{4}\\
0 & \hat{M}
\end{array}\right)
$$

where $\hat{m}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right), \hat{M}=\operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right)$,

$$
\begin{gather*}
\mathcal{U}=W \cdot\left(\begin{array}{cc}
U_{\nu} & 0 \\
0 & U_{N}^{*}
\end{array}\right), \quad W=\exp \left(\begin{array}{cc}
0 & \theta \\
-\theta^{\dagger} & 0
\end{array}\right), \quad \theta^{\dagger}=-\theta \tag{5}\\
\binom{\nu_{L}}{\nu_{R}^{c}}=P_{L} \mathcal{U}\binom{\nu}{N}
\end{gather*}
$$

Common approach

$$
\begin{align*}
& W=\exp \left(\begin{array}{cc}
0 & \theta \\
-\theta^{\dagger} & 0
\end{array}\right) \simeq\left(\begin{array}{cc}
1-\frac{1}{2} \theta \theta^{\dagger} & \theta \\
-\theta^{\dagger} & 1-\frac{1}{2} \theta^{\dagger} \theta
\end{array}\right), \quad \theta \ll I \tag{7}\\
& W^{\dagger}\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{M}
\end{array}\right) W^{*}=\left(\begin{array}{cc}
m_{\nu} & 0 \\
0 & M_{N}
\end{array}\right) \equiv \tilde{\mathcal{M}} \tag{8}\\
& (12): \quad \theta \simeq M_{D} M_{M}^{-1}, \tag{9}\\
& (11): \tag{10}\\
& (22): \quad m_{\nu} \simeq-M_{D} M_{M}^{-1} M_{D}^{T} \tag{11}\\
& M_{N} \simeq M_{M}+\frac{1}{2}\left(\theta^{\dagger} \theta M_{M}+M_{M}^{T} \theta^{T} \theta^{*}\right) \simeq M_{M}
\end{align*}
$$

Using Eq. (6)

$$
\begin{gather*}
\nu_{L} \simeq\left(1-\frac{1}{2} \theta \theta^{\dagger}\right) U_{\nu} v_{L}+\theta U_{N}^{*} N_{L} \tag{12}\\
U_{\mathrm{PMNS}} \simeq(1+\eta) U_{\nu}, \quad \Theta_{\mathrm{m}} \simeq \theta U_{N}^{*}
\end{gather*}
$$

where $\eta=-1 / 2 \theta \theta^{\dagger}$

$$
W \simeq\left(\begin{array}{cc}
1-\frac{1}{2} \theta \theta^{\dagger} & \theta-\frac{1}{6} \theta \theta^{\dagger} \theta \tag{14}\\
-\theta^{\dagger}+\frac{1}{6} \theta^{\dagger} \theta \theta^{\dagger} & 1-\frac{1}{2} \theta^{\dagger} \theta
\end{array}\right), \quad \theta<I
$$

(12) : $\quad M_{D}-\theta M_{M}-\frac{1}{2}\left(\theta \theta^{\dagger} M_{D}+M_{D} \theta^{T} \theta^{*}\right)-\theta M_{D}^{T} \theta^{*}$

$$
\begin{equation*}
+\frac{1}{2} \theta M_{M} \theta^{T} \theta^{*}+\frac{1}{6} \theta \theta^{\dagger} \theta M_{M} \simeq 0, \tag{15}
\end{equation*}
$$

(11) :

$$
-\left(\theta M_{D}^{T}+M_{D} \theta^{T}\right)+\theta M_{M} \theta^{T}+\frac{1}{6}\left(\theta \theta^{\dagger} \theta M_{D}^{T}+M_{D} \theta^{T} \theta^{*} \theta^{T}\right)
$$

$$
\begin{equation*}
+\frac{1}{2}\left(\theta \theta^{\dagger} M_{D} \theta^{T}+\theta M_{D}^{T} \theta^{*} \theta^{T}\right) \simeq m_{\nu} \tag{16}
\end{equation*}
$$

(22) : $\quad M_{M}+\left(\theta^{\dagger} M_{D}+M_{D}^{T} \theta^{*}\right)-\frac{1}{2}\left(\theta^{\dagger} \theta M_{M}+M_{M} \theta^{T} \theta^{*}\right)$

$$
\begin{equation*}
-\frac{1}{2} \theta^{\dagger}\left(\theta M_{D}^{T}+M_{D} \theta^{T}\right) \theta^{*}-\frac{1}{6}\left(\theta^{\dagger} \theta \theta^{\dagger} M_{D}+M_{D}^{T} \theta^{*} \theta^{T} \theta^{*}\right) \simeq M_{N}, \tag{17}
\end{equation*}
$$

where θ, M_{D}, M_{M} are unknown.

The condition $\tilde{\mathcal{M}}_{12}=0$ [Eq.(15)]

$$
\begin{align*}
M_{M} & -\frac{1}{2} M_{M} \theta^{T} \theta^{*}-\frac{1}{6} \theta^{\dagger} \theta M_{M} \\
& \simeq \theta^{-1} M_{D}\left(1-\frac{1}{2} \theta^{T} \theta^{*}\right)-\frac{1}{2} \theta^{\dagger} M_{D}-M_{D}^{T} \theta^{*}, \tag{18}
\end{align*}
$$

i.e.

$$
\begin{align*}
M_{M} & \sim \mathcal{O}\left(\theta^{-1} M_{D}\right), \tag{19}\\
\mathcal{O}\left(\theta^{2} M_{M}\right) & \sim \mathcal{O}\left(\theta M_{D}\right), \tag{20}
\end{align*}
$$

so in the following we will omitted terms $\sim \mathcal{O}\left(\theta^{n} M_{D}\right), n>1$, in $\tilde{\mathcal{M}}_{11}$ and $\tilde{\mathcal{M}}_{22}$. Expressions for

$$
\begin{align*}
m_{\nu} & \simeq-\left(\theta M_{D}^{T}+M_{D} \theta^{T}\right)+\theta M_{M} \theta^{T} \tag{21}\\
M_{N} & \simeq M_{M}+\left(\theta^{\dagger} M_{D}+M_{D}^{T} \theta^{*}\right)-\frac{1}{2}\left(\theta^{\dagger} \theta M_{M}+M_{M} \theta^{T} \theta^{*}\right) \tag{22}
\end{align*}
$$

are the same as in the common approach but with the relation (18) instead of $M_{M}=\theta^{-1} M_{D}$.

$$
\begin{align*}
m_{\nu} & \simeq-\theta M_{D}^{T} \simeq-M_{D} \theta^{T} \tag{23}\\
M_{N} & \simeq \theta^{-1} M_{D}+\frac{1}{6} \theta^{\dagger} M_{D}-\frac{1}{2} M_{D}^{T} \theta^{*} \simeq\left(\theta^{-1}-\frac{1}{3} \theta^{\dagger}\right) M_{D} \tag{24}\\
M_{M} & \simeq \theta^{-1} M_{D}-\frac{1}{3} \theta^{\dagger} M_{D}-M_{D}^{T} \theta^{*} \simeq\left(\theta^{-1}-\frac{4}{3} \theta^{\dagger}\right) M_{D} \tag{25}
\end{align*}
$$

Using Eq. (6)

$$
\begin{gather*}
\nu_{L} \simeq\left(1-\frac{1}{2} \theta \theta^{\dagger}\right) U_{\nu} v_{L}+\left(\theta-\frac{1}{6} \theta \theta^{\dagger} \theta\right) U_{N}^{*} N_{L}, \tag{26}\\
U_{\mathrm{PMNS}} \simeq\left(1-\frac{1}{2} \theta \theta^{\dagger}\right) U_{\nu}, \quad \Theta_{\mathrm{nm}} \simeq\left(\theta-\frac{1}{6} \theta \theta^{\dagger} \theta\right) U_{N}^{*} . \tag{27}
\end{gather*}
$$

Parametrization of the mixing matrix Θ

Approximation $M_{M} \sim \mathcal{O}\left(\theta^{-1} M_{D}\right)$

$$
\begin{gather*}
I=M_{N} M_{N}^{-1} \simeq-M_{D}^{T} U_{\mathrm{PMNS}}^{*} \hat{m}^{-1} U_{\mathrm{PMNS}}^{\dagger} M_{D} U_{N} \hat{M}^{-1} U_{N}^{T}, \tag{28}\\
I \simeq-\left(\sqrt{\hat{M}^{-1}} U_{N}^{T} M_{D}^{T} U_{\mathrm{PMNS}}^{*} \sqrt{\hat{m}^{-1}}\right)\left(\sqrt{\hat{m}^{-1}} U_{\mathrm{PMNS}}^{\dagger} M_{D} U_{N} \sqrt{\hat{M}^{-1}}\right)=\Omega_{\mathrm{m}}^{T} \Omega_{\mathrm{m}}, \tag{29}\\
M_{D}=-i U_{\mathrm{PMNS}} \sqrt{\hat{m}} \Omega_{\mathrm{m}} \sqrt{\hat{M}} U_{N}^{\dagger}, \tag{30}
\end{gather*}
$$

known as the Casas-Ibarra parametrization [Casas J., Ibarra A., Nucl.Phys.B 618 (2001) 171]. So,

$$
\begin{equation*}
\Theta_{\mathrm{m}} \simeq \theta U_{N}^{*} \simeq-i U_{\mathrm{PMNS}} \sqrt{\hat{m}} \Omega_{\mathrm{m}} \sqrt{\hat{M}^{-1}} . \tag{31}
\end{equation*}
$$

Approximation $M_{M} \sim \mathcal{O}\left(\theta M_{D}\right)$

$$
\begin{gather*}
-\sqrt{\hat{M}^{-1}} U_{N}^{T}\left(\theta^{-1}-\frac{1}{3} \theta^{\dagger}\right) U_{\nu} \hat{m} U_{\nu}^{T}\left(\theta^{T}\right)^{-1} U_{N} \sqrt{\hat{M}^{-1}} \simeq I, \tag{32}\\
\Omega_{\mathrm{nm}}=i \sqrt{\hat{m}} U_{\nu}^{T}\left(\theta^{T}\right)^{-1} U_{N} \sqrt{\hat{M}^{-1}}
\end{gather*}
$$

$$
\begin{align*}
\Omega_{\mathrm{nm}}^{-1} & =\Omega_{\mathrm{nm}}^{T}+\frac{1}{3} \hat{M}^{-1}\left(\Omega_{\mathrm{nm}}^{-1}\right)^{*} \hat{m} \tag{34}\\
\theta & =-i U_{\nu} \sqrt{\hat{m}}\left(\Omega_{\mathrm{nm}}^{-1}\right)^{T} \sqrt{\hat{M}^{-1}} U_{N}^{T} \tag{35}\\
\Theta_{\mathrm{nm}} & \simeq \theta U_{N}^{*} \simeq-i U_{\nu} \sqrt{\hat{m}}\left(\Omega_{\mathrm{nm}}^{-1}\right)^{T} \sqrt{\hat{M}^{-1}} \tag{36}
\end{align*}
$$

Charged and neutral neutrino currents

$$
\begin{align*}
\mathcal{L}_{N C}^{\nu} & =\frac{g}{2 c_{W}} \bar{v}_{L} \gamma^{\mu} U_{\mathrm{PMNS}}^{\dagger} U_{\mathrm{PMNS}} v_{L} Z_{\mu} \tag{37}\\
\mathcal{L}_{C C}^{\nu} & =-\frac{g}{\sqrt{2}} \bar{l}_{L} \gamma^{\mu} U_{\mathrm{PMNS}} v_{L} W_{\mu}^{-}+\text {h.c. } \tag{38}\\
\mathcal{L}_{N C}^{N} & =-\frac{g}{2 c_{W}} \bar{N}_{L} \gamma^{\mu} \Theta^{\dagger} \Theta N_{L} Z_{\mu} \\
& -\left(\frac{g}{2 c_{W}} \bar{v}_{L} U_{\mathrm{PMNS}}^{\dagger} \gamma^{\mu} \Theta N_{L} Z_{\mu}+\text { h.c. }\right) \tag{39}\\
\mathcal{L}_{C C}^{N} & =-\frac{g}{\sqrt{2}} \bar{l}_{L} \gamma^{\mu} \Theta N_{L} W_{\mu}^{-}+\text {h.c. } \tag{40}
\end{align*}
$$

where Θ is the minimal Θ_{m} or nonminimal Θ_{nm} mixing matrix

$$
\left(m_{\nu}\right)_{e e}<2 \mathrm{eV}, \quad\left(m_{\nu}\right)_{\mu \mu}<0.19 \mathrm{MeV}, \quad\left(m_{\nu}\right)_{\tau \tau}<18.2 \mathrm{MeV}
$$

K. Olive, et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001

$$
\sum_{i} m_{\nu_{i}}<0.2-1.0 \mathrm{eV} 1602.04816 \mathrm{v} 2[\text { hep-ph }]
$$

Approximation $M_{M} \sim \mathcal{O}\left(\theta^{-1} M_{D}\right)$

$$
\begin{align*}
m_{\nu} & \simeq-M_{D} \theta^{T} \simeq-\theta M_{N} \theta^{T} \\
& \simeq-\theta U_{N}^{*} \hat{M} U_{N}^{\dagger} \theta^{T}=-\Theta \hat{M} \Theta^{T} \simeq U_{\mathrm{PMNS}} \hat{m} U_{\mathrm{PMNS}}^{T} \tag{41}
\end{align*}
$$

where Eqs. (9), (11), (31) and $\Omega_{\mathrm{m}} \Omega_{\mathrm{m}}^{T}=I$ were used, correspondingly.
Approximation $M_{M} \sim \mathcal{O}\left(\theta M_{D}\right)$
Using (23), (24), (35), (4), (34) and (36), correspondingly, one can find

$$
\begin{align*}
m_{\nu} & \simeq-M_{D} \theta^{T} \simeq-\left[\theta-\frac{1}{3}\left(\theta^{\dagger}\right)^{-1}\right] M_{N} \theta^{T} \tag{42}\\
& =i U_{\nu} \sqrt{\hat{m}}\left[\left(\Omega_{\mathrm{nm}}^{-1}\right)^{T}+\frac{1}{3} \hat{m}^{-1} \Omega_{\mathrm{nm}}^{*} \hat{M}\right] \sqrt{\hat{M}^{-1}} U_{N}^{T} M_{N} \theta^{T} \\
& \simeq U_{\mathrm{PMNS}} \hat{m} U_{\mathrm{PMNS}}^{T}
\end{align*}
$$

Numerical estimations

For simplicity, we assume that

$$
\begin{equation*}
\Omega_{\mathrm{m}}=I, \quad \Omega_{\mathrm{nm}}=\operatorname{diag}\left(\omega_{1}, \omega_{2}, \omega_{3}\right), \quad \omega_{i}=\sqrt{1-\frac{1}{3} \frac{m_{i}}{M_{i}}} \tag{44}
\end{equation*}
$$

which satisfy requirements (29) and (34) and

- $m_{0}[\mathrm{NO}(\mathrm{IO})]=0.03 \mathrm{eV}(0.015 \mathrm{eV})$
- (i) $M_{1}=7 \mathrm{keV}, M_{2}=M_{3}=M$;
(ii) $M_{1}=M_{2}=M_{3}=M$

Phenomenologically convenient quantities:

$$
\begin{equation*}
U_{\alpha i}^{2}=\left|\Theta_{\alpha I}\right|^{2}, \quad U_{i}^{2}=\sum_{\alpha} U_{\alpha I}^{2}, \quad U^{2}=\sum_{i} U_{i}^{2} \tag{45}
\end{equation*}
$$

Prospects and conclusions

- We proposed a modified seesaw type I expression for the mixing matrix

$$
\begin{equation*}
\Theta_{\mathrm{nm}} \simeq \theta U_{N}^{*} \simeq-i U_{\nu} \sqrt{\hat{m}}\left(\Omega_{\mathrm{nm}}^{-1}\right)^{T} \sqrt{\hat{M}^{-1}} \tag{46}
\end{equation*}
$$

where the matrix Ω_{nm} satisfies

$$
\begin{equation*}
\Omega_{\mathrm{nm}}^{-1}=\Omega_{\mathrm{nm}}^{T}+\frac{1}{3} \hat{M}^{-1}\left(\Omega_{\mathrm{nm}}^{-1}\right)^{*} \hat{m} \tag{47}
\end{equation*}
$$

- The contributions of the order of $\mathcal{O}\left(\theta M_{D}\right)$ coming from the expansion of rotation matrix W up to $\mathcal{O}\left(\theta^{3}\right)$ terms to the Majorana matrix representation M_{M} were obtained. It was shown that these contributions are of the same order as for the case $W \sim \mathcal{O}\left(\theta^{2}\right)$ and, therofore, they should be included in relevant analysis.
- It was shown that the effective mass m_{ν} has the same representation for both approximations $M_{M} \sim \mathcal{O}\left(\theta^{-1} M_{D}\right)$ and $M_{M} \sim \mathcal{O}\left(\theta M_{D}\right)$.
- The absolute value of relative difference of $|\Theta|^{2}$ in approximations $M_{M} \sim \mathcal{O}\left(\theta^{-1} M_{D}\right)$ and $M_{M} \sim \mathcal{O}\left(\theta M_{D}\right)$ is negligible for phenomenology on accelerators. However, it can be important for processes in the early Universe.

Thank you for your attention

