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Introduction

Distribution of m? as a function of p Distribution of dE/dx as a function on
= Particle identification is an important aspect of _ g % E
most particle physics experiments. 1-:; > =
- i—:/ 15 =
» Identify long-lived particles that leave a & 0;5 | = ‘ E
trace in the detector: electrons, muons, > .= = .
photons, charged pions, charged kaons, etc. |G 0.4
- 02w
= Short-lived particles are identified by their £  of o8
decays into long-lived —g-ig
QAR ey e A
= Various standard approaches are used for M2 L e K &0 3 &9 1
particle identification. One of them is an Momentum, GeV/c pid (GeVio)
approach based on estimating the deviation of Multi layer Perceptron (MLP) Models
particles from the assumed average value in the e
distributions of lost energy and the mass square T
in different momentum range (n-Sigma) [1]. et aver Q
" In addition to standard approaches, machine e O Output Layer
learning methods are used for particle Q
identification. - Q Q
Goal: Selection of the optimal MLP model to improve the Q Q
efficiency of identification of charged particles. Comparison e |
of the efficiency of the standard and MLP approach. Q

[1] https://qit.jinr.ru/nica/mpdroot/-/tree/dev/core/mpdPid




Feature selection

= Variables used: dE/dx, m?, p,,, pr. B. ¢, 0, n, q, nHits, dca, V., V., V..
" 6 species of particles : 7—, 77, K=, K™, p, p.
= 200,000 events for each class were used to train and test the models

dca - distance of the closest
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Fea

Input feature

ture selection

Weight matrix

20 30 50
Element of hidden lyer(perceptron)

= dedx, m2, Ptot, charge - for almost every element of the hidden layer have a weight other than zero
" beta, efa, theta, gPt - for some elements of the hidden layer have a weight other than zero

" nHits, dca, phi , VX, Vy, Vz - have zero weight for all elements of the hidden layer
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Feature selection

Dependence of fl-score on a set of variables
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" The reason why K™* have the lowest fl-score is that,
for example, on the distribution m? they are between
p and 7 mixed with all of them

= Some additional variables improve the fl-score for one type
of particles and worsen for another type. Another
additional variables do not make a significant contribution to
the fl-score

" Set of parameters was used in the research:
Ptot, charge, dedx, m2

false negatives true negatives

recall * precision

= ) ¥ o
/i recall + precision O O
true positives false positives
TP
precision =
I'P+ FP
® O
. TP
recall = ® ~ o
I'P+ FN O o




Hyperparameters selection

d ft ighted fl- t f ft
Set of hyperparameters that were used in Dependence ot the weighte score on the value of each of the

. Lo, hyperparameters
Bayesian optimisation yperp
hidden layer sizes 10 - 70 —_ I TR ‘ ' : e JERCCHR
max 1ter 10 - 100 - . ¢ : oo . e
learning rate init 0.0001 - 0.01 s | . .
activation logistic, tanh, relu 3 : .
learning _rate constant, invscaling, adaptive : : 0 . : | . . - :
Map OF hyperparame.l-ers | tanh relu logistic 20 40 60 constant invscaling adaptive 0 0.005 0.01 50 100 ’
activation hidden_layer_sizes learning_rate learning_rate_init max_iter

hidden__layer_sizes and max__iter

100 Objective Value

= More classifiers have fl-score > 0.97

80
" o = To simplify the model, a model with hidden_layer_sizes = 36
J and max_iter = 48 was chosen. learning_rate_init = 0.006,
: P e activation = logistic, learning_rate = constant
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Result
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= To evaluate the approaches, a data set with a 08~ = “bbs 08| +444802
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» The efficiency of MLP model identification is
compared with the efficiency of identification A
. c
of the standard n-Sigma approach[1]. s 0
[
" For each particle species MLP approach has s qamesensenesesetenet e itistisiiity
higher efficiency than n-Sigma approach for I R
full range of momentum. T - nsigma
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[1] https://git.jinr.ru/nica/mpdroot/-/tree/dev/core/mpdPid




Result
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Result

Why does MLP approach have better efficiency for each particle species in all range of momentum,
but it has the same or higher contamination than n-Sigma approach?

" n-Sigma approach identifies particle as particle of a i-species if N, < N(f,- + N2 (1) values are in a certain range around

TOF OrpC _

| | | dE/dx — (dE/dx) m?* — (m?)!

mean value for i-species of particle . Where N(,%PC = i : N(%F = i ,
OTpC e

» If a particle can be compatible with more than one species, n-Sigma approach does not identify this particle.

n-Sigma PID 107
particle identified as not kaon

dE/dx [GeV/cm]
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Conclusion

B For MLP multi-classifier the set of features that make the biggest contribution to
fl-score has been chosen.

B Using Bayesian optimisation the hyperparametrs have been chosen which do not
complicate MLP model and allow to get high fl-score.

B The n-Sigma approach was studied and compared with MLP approach for particle
identification. It has been shown that for each particle species, the MLP approach
has a higher efficiency than the n-Sigma approach for the full momentum range.

B The improvement is shown only for the certain version of MC simulation data. In
the future, it is planned to conduct research for a wide set of MC data.

This work was supported by RSCF under grant N 22-72-10028
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Result

Why does MLP approach have better efficiency for each particle species in all range of momentum,
but it has the same or higher contamination than n-Sigma approach?

" n-Sigma approach identifies particle as particle of a i-species if N, < Ng,- + N2 (1) values are in a certain range around

TOF OrPC
mean value for i-species of particle . Where N, and N, 2
dE/dx — (dE/dx)' N m? — (m*)! P—0
OrpC (F% - ’ OrOF 0’; , ’
P =1

" If the condition (1) is met for Np-~ and N;OF, the particle is identified as particle of
I-species.

= If a particle can be compatible with more than one species, the approach does not
identify this particle.

" n-Sigma has worse efficiency while having less contamination. The reason for this is
that in the used dataset, the n-Sigma could not identify many particles

% all identified particles of

given species




