Searching for the baryon-tomeson transition region with the MPD at NICA

Rodrigo Guzmán Castro MexNICA Collaboration

ICPPA - 2022

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México December 2, 2022

Instituto de Ciencias Nucleares UNAM

NICA Complex

Study a variety of ion collisions, in the range $\sqrt{s_{_{NN}}} = 4$ to 11 GeV

12/02/22

Time Projection Chamber (TPC)

- 90% Ar + 10% CH₄
 - |η|<1.2
 - P_T>100 MeV/c
- Two-track resolution ~ 1 cm

Time Of Flight system (TOF)

90% C₂H₂F₄ + 5% SF₆ + 5% i-C₄H₁₀

• |η|<2

- $0.1 < P_T < 2 \text{ GeV/c}$
- Time resolution \sim 50 ps

Particle identification

¹M. Allison and H. Cobb, An. Rev. Nucl. Part. Sci. **30** (1980) 253-296.

12/02/22

Motivation

In the framework of the statistical model, a rapid change is expected as the hadronic gas undergoes a transition from a baryondominated to a meson-dominance.²

The maximum in the K⁺/ π^+ ratio is predicted in this model which corresponds to this transition region.²

²J. Cleymans *et al.*, Phys. Lett. B **615** (2005) 50-54.

12/02/22

Data sample analyzed

Data sets generated with UrQMD 3.4v:

1) Au+Au collisions at 7.7 GeV Reconstruction: Geant3 & 0.5 Tesla

2) Au+Au collisions at 11.5 GeV Reconstruction: Geant3 & 0.5 Tesla

3) Bi+Bi collisions at 9.2 GeV Reconstruction: Geant4 & 0.5 Tesla

Reconstruction efficiency

Au+Au collisions

³V. Abgaryan et al. [MPD Collaboration], Eur. Phys. J. A 58, 140 (2022).

12/02/22

Centrality for Au+Au at 11.5 GeV

Reconstructed multiplicity

Transverse momentum distributions Monte Carlo (MC) vs. reconstruction

Integrated yields ratio (rec./MC) (0.4 - 2 GeV/c) $\pi^{+} \sim 0.66$ $K^{+} \sim 0.58$

12/02/22

Transverse momentum distributions Monte Carlo (MC) vs. reconstruction

Integrated yields ratio (rec./MC)

(0.4 – 2 GeV/c)

- π⁺ ~ 0.66
- K⁺ ~ 0.57

K⁺/π⁺ ~ 0.21
(0.4 - 2 GeV/c)

Transverse momentum per centrality

Au+Au (MC)

• 7.7 GeV

The distributions for the negative pions are similar

12/02/22

ICPPA - 2022

12

Crossing point between π⁺ and p⁺

Distributions cross ~0.85 GeV/c for 11.5 GeV and ~0.65 GeV/c for 7.7 GeV

12/02/22

Crossing point at different centralities

• 7.7 GeV

Crossing point at $p_T \sim 0.65$ and $p_T \sim 0.75$ GeV/c for the most central and peripherial (7.7 GeV), at $p_T \sim 0.85$ and $p_T \sim 1.05$ GeV/c for the most central and peripherial (11.5 GeV)

12/02/22

ICPPA - 2022

14

Transverse momentum distributions Monte Carlo (MC) vs. reconstruction

Integrated yields ratio (rec./MC) (0.4 – 2 GeV/c)

- π⁺ ~ 0.72
- K⁺~ 0.64

K⁺/π⁺ ~ 0.23
(0.4 - 2 GeV/c)

Crossing point at different centralities

Bi+Bi 9.2 GeV (|y|<0.5), MC

Distributions cross at $p_T \sim 0.55$ GeV/c for the most central and $p_T \sim 0.65$ GeV/c for the most peripherial

12/02/22

Conclusions

For collisions Au+Au at 7.7 and 11.5 GeV & Bi+Bi at 9.2 GeV, generated by UrQMD and reconstructed in the MPD framework:

- a) By measuring the particle integrated yields, we can study the baryon-to-meson dominated transition region.
- b) We showed the evolution of the crossing point for pions and protons as a function of the energy and centrality classes for Au+Au and Bi+Bi.

Studies of flow and production mechanisms, together with the freeze-out parameters, are needed to better characterize the transition region from meson-to-baryon dominance. Work in progress.

Thank you for your attention. Special thanks to E. Cuautle, W. Bietenholz, A. Ayala, R. García, A. Mudrokh, V. Riabov and A. Aparin

Transverse momentum for π^{-}

Transverse momentum for π^{-}

Au+Au 11.5 GeV

12/02/22

Transverse momentum for K⁻

Transverse momentum for K⁻

12/02/22

Transverse momentum for p⁻

Transverse momentum for p⁻

