Anisotropic flow measurements from the NA61/SHINE beam momentum scan program at the CERN SPS

Oleg Golosov (NRC "Kurchatov Institute", MEPhI)
Evgeny Kashirin (MEPhI)

Results approved by the NA61/SHINE Collaboration

Collision geometry and the anisotropic transverse flow

Asymmetry in coordinate space converts due to interaction into momentum asymmetry with respect to the reaction plane:

$$
\rho(\phi)=\frac{1}{2 \pi}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\varphi-\Psi_{R P}\right)\right]\right) \quad v_{n}=\left\langle\cos n\left(\varphi-\Psi_{R P}\right)\right\rangle
$$

Components needed to calculate v_{n}

- momentum $\left(\phi, y, \mathrm{p}_{\mathrm{T}}\right)$
- centrality estimation
- particle identification
- Ψ_{RP} estimate with symmetry planes of
- participants
- projectile / target spectators

Collective flow at different energies

- NA61/SHINE Pb-ion beam energy scan: $p_{\text {LAB }}=13-150 \mathrm{AGeV} / \mathrm{c}\left(\sqrt{\mathrm{S}_{\mathrm{NN}}}=5.1-16.8 \mathrm{GeV}\right)$
- complementary to STAR@RHIC
- bridge to FAIR/GSI and NICA beam energies
- Advantage of fixed target setup
- forward rapidity tracking with TPC
- projectile spectators energy with forward calorimeter

Collective flow at different energies

- NA61/SHINE Pb-ion beam energy scan: $p_{\text {LAB }}=13-150 \mathrm{~A} \mathrm{GeV} / c\left(\sqrt{\mathrm{~s}_{\mathrm{NN}}}=5.1-16.8 \mathrm{GeV}\right)$
- complementary to STAR@RHIC
- bridge to FAIR/GSI and NICA beam energies
- Advantage of fixed target setup
- forward rapidity tracking with TPC
- projectile spectators energy with forward calorimeter

NA61/SHINE experiment

- Large acceptance hadron spectrometer (TPC)
- full coverage of forward hemisphere
- tracking + identification with $\mathrm{dE} / \mathrm{dx}$ down to $\mathrm{p}_{\mathrm{T}} \sim 0 \mathrm{GeV} / \mathrm{c}$
- Forward rapidity calorimeter with transverse granularity (PSD)
- $\mathrm{Pb}+\mathrm{Pb}$ beam momentum scan:

13A, 30A, 150A GeV/c
$\left(\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.1,6.8,16.8 \mathrm{GeV}\right)$

- System size scan (Xe+La, Ar+Sc, Be+Be)

Scalar product method with $1^{\text {st }}$ harmonic Q -vector

u-vector

$\mathbf{u}_{\mathbf{n}}=\left(u_{n, x}, u_{n, y}\right)=(\cos (n \phi), \sin (n \phi))$
φ - azimuthal angle of particle momentum (or PSD module)

PSD subevents \mathbf{Q}_{1}-vector

$$
Q_{1, \alpha}^{S}=\frac{1}{\sum E_{i}} E_{i} u_{1, i}^{\alpha}
$$

$S=\mathrm{A}, \mathrm{B}, \mathrm{C}-\mathrm{PSD}$ subevents
i - index of PSD module in subevent

$$
\alpha, \beta, \gamma=x, y
$$

Directed flow:
$v_{1, \alpha}\{S\}=\frac{2\left\langle u_{1, \alpha} Q_{1, \alpha}^{S}\right\rangle}{R_{1, \alpha}^{S}}$
6 independent combinations

Elliptic flow:
$v_{2, \alpha \beta \gamma}\{S 1, S 2\}=\frac{4\left\langle u_{2, \alpha} Q_{1, \beta}^{S 1} Q_{1, \gamma}^{S 2}\right\rangle}{R_{1, \beta}^{S 1} R_{1, \gamma}^{S 2}}$
12 non-zero combinations

3 PSD + 1 TPC subevents resolution

Additional correlations are suppressed by using pseudorapidity-separated subevents.

Directed flow v_{1} of protons and negative pions

Strong mass and centrality dependence

Slope of v_{1} at midrapidity: centrality dependence

Slope extraction procedure:

- $1^{\text {st }}$ order polynomial fit with 2 parameters (slope and offset) at $|y|<0.4$.
- Slope extraction is sensitive to fit function and rapidity range

Observations:

- Offset for protons is below 6×10^{-3} for centrality $0-60 \%$ and increases up to 3×10^{-2} for centrality $>60 \%$.
- Slope of v_{1} changes sign at
- 70% centrality for protons
- 20% centrality for pions

Slope of v_{1} at midrapidity: comparison with STAR

- Proton and π^{-}selection is tuned to fit STAR fxt acceptance
- Centrality estimation is based on track number

STAR Collaboration, PRC 103, 034908 (2021)

Directed and elliptic flow energy dependence

- strong energy dependence
- change of sign moves to higher p_{T} with increasing energy

- clear mass dependence
- weak energy dependence

Summary

Presented NA61/SHINE preliminary results for π^{-}and proton v_{1} and v_{2} for $\mathrm{Pb}+\mathrm{Pb} @ 13 \mathrm{~A}$ and $30 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$ relative to projectile spectator symmetry plane

- differentially vs centrality, y, and p_{T}
- good agreement with results from STAR FXT and reanalysis of NA49 data

Outlook

- Complete systematic analysis for 13 and 30A GeV/c
- Comparisons with available models
- Collective effects scan with beam momentum (13-150A GeV/c) and system size ($\mathrm{Be}+\mathrm{Be}$, $\mathrm{Ar}+\mathrm{Sc}, \mathrm{Xe}+\mathrm{La}$) and

