Anisotropic flow measurements from the NA61/SHINE beam momentum scan program at the CERN SPS

Oleg Golosov (NRC "Kurchatov Institute", MEPhI)

Evgeny Kashirin (MEPhI)

Results approved by the NA61/SHINE Collaboration

02/12/2022

Collision geometry and the anisotropic transverse flow

Asymmetry in coordinate space converts due to interaction into momentum asymmetry with respect to the reaction plane:

$$ho(\phi) = rac{1}{2\pi} igg(1 + 2\sum_{n=1}^\infty v_n \cos \left[n(arphi - \Psi_{RP})
ight] igg)$$

$$v_n = \langle \cos n (arphi - \Psi_{RP})
angle$$

Components needed to calculate v_n

- momentum (ϕ , y, p_T)
- centrality estimation
- particle identification
- Ψ_{RP} estimate with symmetry planes of
 - participants
 - projectile / target spectators

Collective flow at different energies

- NA61/SHINE Pb-ion beam energy scan: $p_{LAB} = 13-150A \text{ GeV/}c (\sqrt{s_{NN}} = 5.1-16.8 \text{ GeV})$
 - complementary to STAR@RHIC
 - bridge to FAIR/GSI and NICA beam energies
- Advantage of fixed target setup
 - forward rapidity tracking with TPC
 - projectile spectators energy with forward calorimeter

Collective flow at different energies

- NA61/SHINE Pb-ion beam energy scan: $p_{LAB} = 13-150A \text{ GeV/}c (\sqrt{s_{NN}} = 5.1-16.8 \text{ GeV})$
 - complementary to STAR@RHIC
 - bridge to FAIR/GSI and NICA beam energies
- Advantage of fixed target setup
 - forward rapidity tracking with TPC
 - projectile spectators energy with forward calorimeter

NA61/SHINE experiment

- Large acceptance hadron spectrometer (TPC)
 - full coverage of forward hemisphere
 - tracking + identification with dE/dx down to $p_T \sim 0 \text{ GeV}/c$
- Forward rapidity calorimeter with transverse granularity (PSD)
- Pb+Pb beam momentum scan: 13A, 30A, 150A GeV/c (√s_{NN} = 5.1, 6.8, 16.8 GeV)
- System size scan (Xe+La, Ar+Sc, Be+Be)

Scalar product method with 1st harmonic Q-vector

u-vector

 $\mathbf{u_n} = (u_{n,x}, u_{n,y}) = (\cos(n\phi), \sin(n\phi))$

 φ - azimuthal angle of particle momentum (or PSD module)

$$Q^S_{1,lpha} = rac{1}{\sum E_i} E_i u^lpha_{1,i}$$

S = A,B,C – PSD subevents *i* - index of PSD module in subevent

$$lpha,eta,\gamma=x,y$$

Directed flow:

$$v_{1,lpha}\{S\}=rac{2\langle u_{1,lpha}Q_{1,lpha}^S
angle}{R_{1,lpha}^S}$$

6 independent combinations

Elliptic flow:

$$v_{2,lphaeta\gamma}\{S1,S2\} = rac{4\langle u_{2,lpha}Q^{S1}_{1,eta}Q^{S2}_{1,\gamma}
angle}{R^{S1}_{1,eta}R^{S2}_{1,\gamma}}$$

12 non-zero combinations

 R_1^{S} – resolution correction factor for the subevent S (see the following slide)

6

3 PSD + 1 TPC subevents resolution

Additional correlations are suppressed by using pseudorapidity-separated subevents.

7

Directed flow v_1 of protons and negative pions

Strong mass and centrality dependence

Slope of v₁ at midrapidity: centrality dependence

Slope extraction procedure:

- 1st order polynomial fit with 2 parameters (slope and offset) at |y| < 0.4.
- Slope extraction is sensitive to fit function and rapidity range

Observations:

- Offset for protons is below 6x10⁻³ for centrality 0-60% and increases up to 3x10⁻² for centrality > 60%.
- Slope of v₁ changes sign at
 - 70% centrality for protons
 - 20% centrality for pions

Slope of v_1 at midrapidity: comparison with STAR

- Proton and π^- selection is tuned to fit STAR fxt acceptance
- Centrality estimation is based on track number

STAR Collaboration, PRC 103, 034908 (2021)

10

Directed and elliptic flow energy dependence

Summary

Presented NA61/SHINE preliminary results for π^- and proton v_1 and v_2 for Pb+Pb @ 13A and 30A GeV/c relative to projectile spectator symmetry plane

- differentially vs centrality, y, and p_{T}
- good agreement with results from STAR FXT and reanalysis of NA49 data

Outlook

- Complete systematic analysis for 13 and 30A GeV/c
- Comparisons with available models
- Collective effects scan with beam momentum (13-150A GeV/c) and system size (Be+Be, Ar+Sc, Xe+La) and