

Nuclotron-based Ion Collider fAcility

Prospects for the measurement of electromagnetic probes in heavy-ion collisions at NICA energies

V. Riabov for the MPD Collaboration

Electromagnetic probes

- Photons and electrons emitted from different stages of heavy-ion collisions
- ◆ Photons and electrons do not participate in strong interactions → produced strongly interacting system (QGP) is transparent → penetrating probes
- Provide undistorted information about the system at the production time

- Problems:
 - \checkmark low emission rate
 - \checkmark overlapping signals from different stages of heavy-ion collisions
 - ✓ huge background from decays of neutral mesons → precise measurement of the neutral meson production is a needed
- Photons and electrons are promising signals of the phase transition and chiral symmetry restoration
- Interpretation of results requires theoretical models that would describe the dynamics of heavy-ion collisions during the whole system evolution

Multi-Purpose Detector

Stage- I

Length	$340~\mathrm{cm}$
Vessel outer radius	$140 \mathrm{~cm}$
Vessel inner radius	27 cm
Default magnetic field	$0.5 \mathrm{T}$
Drift gas mixture	$90\% { m Ar}{+}10\% { m CH}_4$
Maximum event rate	7 kHz ($L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$)

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$ **TOF, EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \phi| < 2\pi$, $2.9 < |\eta| < 3.3$ **FHCAL**: $|\Delta \phi| < 2\pi$, $2 < |\eta| < 5$

Au+Au @ 11 GeV (UrQMD + full chain reconstruction)

Reconstruction of photons

- Electromagnetic calorimeter ECAL:
 - ✓ dedicated detector to measure electromagnetic signals like γ/e^{\pm} (energy, position, time of flight)
 - ✓ energy resolution ~ $1/\sqrt{E}$, better suited for high-E signals
 - ✓ suffer from large hadronic background at low energies
 - \checkmark shower shape and time-of-flight selections for identification of photons
- Photon conversion method (PCM) :
 - ✓ photons are identified as e⁺e⁻ pairs with small invariant mass after some second vertex topology, single track and pair selection cuts optimized for better S/B ratio
 - ✓ energy resolution ~ E, better suited for low-E
 - \checkmark typically provides very high photon purity
 - ✓ suffer from small γ conversion probability

Reconstruction of electrons

- ✤ Charged particle tracks are reconstructed in the TPC
- ♦ Particles are identified in the TPC ($\langle dE/dx \rangle$), TOF (v/c ~ 1) and ECAL (E/p ~ 1)

Reasonable electron track reconstruction efficiency and electron purity after multiparametric optimization of selections

Neutral mesons

- Neutral mesons are the main source of background for direct photon and (di)electron measurements
- ✤ 15M AuAu@11 (UrQMD v.3.4) events, realistic vertex distribution

• Reconstructed π^0 and η spectra match the generated ones within statistical uncertainties

✤ Measurements of neutral mesons will be possible with ~ 10M sampled heavy-ion collisions

Direct photons

- Direct photons photons not from hadronic decays.
- Produced throughout the system evolution (thermal + prompt) :
 - ✓ penetrating probe
 - ✓ low-E most direct estimation of the effective system temperature
 - ✓ high-E hard scattering probe
- Direct photons in A-A collisions:
 - ✓ LHC, PbPb @ 2.76 and 5 TeV
 - ✓ RHIC, Au-Au(CuCu) @ 62-200 GeV
 - ✓ SPS, PbPb @ 17.2 GeV

* No measurements at NICA energies: yields and flow vs. p_T and centrality

Simultaneous description of the large photon yields and flow is a challenge for theoretical models at RHIC and the LHC \rightarrow "direct photon puzzle"

V. Riabov for the MPD, ICPPA-2022

Direct photon yields at NICA

Estimation of the direct photon yields @NICA

10

10

10

10

10

GeV/c, 2.1 GeV/c

p_ [GeV/c]

 $d^3N_{\gamma}/d^2p_{T}dy$ / (dN $_{ch}/d\eta$ $\Big|_{\eta=0}^{1.25}$ [(GeV/c) 2]

- ✓ UrQMD v3.4 with hybrid model (3+1D hydro, bag model EoS, hadronic rescattering and resonances within UrQMD)
- ✓ each cell have Ti, Ei, μ bi:
 - T is high QGP phase (Peter Arnold, Guy D. Moore, Laurence G. Yaffe, JHEP 0112:009 2001)
 - T is low HG phase (Simon Turbide, Ralf Rapp, Charles Gale, Phys.Rev.C69:014903,2004)
 - T is intermediate mixed phase
- \checkmark integrate over all cells and all time steps
- \checkmark calculations reproduce hydro calculations for the SPS

Physics of Particles and Nuclei, 2021, Vol. 52, No. 4, pp. 681-685

• Non-zero direct photon yields are predicted with $R\gamma \sim 1.05 - 1.15$ and $v2 \sim 0.5\%$ at top NICA energy

V. Riabov for the MPD, ICPPA-2022

Prospects for the MPD

- ✤ Photons can be measured in the ECAL or in the tracking system as e⁺e⁻ conversion pairs (PCM)
- ✤ Main sources of systematic uncertainties for direct photons:
 - \checkmark detector material budget \rightarrow conversion probability
 - ✓ π^0 reconstruction efficiency
 - ✓ p_T -shapes of π^0 and η production spectra

- ECAL and PCM for photon reconstruction and measurement of neutral mesons (background)
- ♦ With Rγ ~ 1.1 and δ Rγ/Rγ ~ 3% → uncertainty of T_{eff} ~ 10%
- Development of reconstruction techniques and estimation of needed statistics are in progress

 \rightarrow MPD can provide <u>unique measurements</u> for direct photon production @ NICA energies

Dielectrons

arXiv:2010.04614 [nucl-th].

- ✤ Low Mass Region:
 - ✓ excess in dilepton yields: broadening of the ρ meson spectral function → restoration of chiral symmetry
 - ✓ sum of QGP and hadronic contributions proportional to fireball lifetime →
 "chronometer" for heavy-ion collisions
 - ✓ yield of dielectron pairs is sensitive to nature of the phase transition

T. Galatyuk et al., Eur. Phys. J. A 52 (2016) 131; R. Rapp and H. v. Hess, PLB 753 (2016) 586 J.Cleymans et al. 2006 Phys. Rev. C73, 034905 NA60: H. Specht, AIP Conf. Proc. 1322 (2010) 160; HADES: Nature Physics 15 (2019) 1040

- ✤ Intermediate Mass Region:
 - ✓ excitation function of the inverse-slope parameter, T (M = 1.5 - 2.5 GeV/c²) is closely related to the initial temperature of the fireball
 → "thermometer" for the heavy-ion collisions

Experimental challenges

- ✤ MPD provides high efficiency of electron track reconstruction and identification
- ★ Dielectron measurements suffer from huge combinatorial background, pairs with electrons from Dalitz decays of neutral mesons (π^0 , η)

- With the existing track reconstruction algorithms, low p_T tracks are not reconstructed properly even though full hit information is available in the detector for tracks with $p_T > 30$ MeV/c
- Tracks with $p_T < 100$ MeV do not cross the TPC (lower identification probability)

Possible solutions

- Improved reconstruction of low-p_T electron tracks (optimized DCA and track quality selections)
- ✤ Tagging and rejection of electrons from conversion → test e⁺e⁻ pairs for consistency with being a conversion pair based on pair topology, mass, pointing angle, DCA, etc.
- ★ Tagging and rejection of electrons from Dalitz decays of $\pi^0 \rightarrow \gamma e^+e^- \rightarrow$ test e⁺e⁻ pairs for consistency with being a pair from the Dalitz decay by mass (M_{ee} < 100-150 MeV/c²)
- Increase efficiency of tagging by selecting electrons in a limited rapidity acceptance (|y| < 0.5) and pairing them with electrons reconstructed in the whole detector acceptance with looser e-ID selections
- Multiparametric analysis to optimize signals statistical significance (smaller statistical uncertainties) and increase S/B ratio (decrease systematic uncertainties)

BiBi@9.2 GeV (UrQMD+PHSD), 10 M events→ full event/detector simulation and reconstruction

- S/B (integrated in 0.2-1.5 GeV/c²) ~ 5-10%
- Methods to improve S/B ratio with a minimal penalty for pair reconstruction are being matured
- Meaningful measurements for e⁺e⁻ continuum and LVMs would require ~ 100M events, first observations will be possible with ~ 50M events

Summary

- ✓ Measurements of electromagnetic probes such as the direct photons and dielectron continuum significantly extend the physics program of the MPD experiment
- \checkmark Measurements of neutral mesons will be available with the first collected data sets
- $\checkmark\,$ MPD can provide unique measurements for direct photons at NICA energies
- ✓ MPD has very good potential for dielectron measurements, statistics hungry analysis

BACKUP

NICA Project

- * The first megascience project in Russia, which is approaching its full commissioning:
 - \checkmark already running in the fixed-target mode BM@N
 - \checkmark start of operation in collider mode in 2023-2024 MPD and later SPD
- Expected beam configuration in Stage-I:
 - \checkmark not-optimal beam optics with wide z-vertex distribution, $\sigma_z \sim 50~\text{cm}$
 - ✓ reduced luminosity (~10²⁵) → collision rate ~ 50 Hz
 - ✓ collision system available with the current sources: C (A=12), N (A=14), Ar (A=40), Fe (A=56), Kr (A=78-86), Xe (A=124-134), Bi (A=209) → start with Bi+Bi @ 9.2 GeV in 2023-2024