

Recent PHENIX Results

Larionova Daria Y. Berdnikov, A. Berdnikov, D. Kotov, Yu. Mitrankov, M. Mitrankova, E. Bannikov for the PHENIX collaboration

Light hadron production in small and large systems

- Identified charged hadron production
- $\rightarrow \phi$ –meson production in p+AI, p/d/³He+Au collisions
- > ϕ -meson production in Cu+Au and U+U collisions
- > π^0 -meson production in p+p, p+AI, p/d/³He+Au collisions

Collectivity in small systems

Direct photon production

Heavy flavor

- > c and b –quark production in Au+Au collisions
- > $\psi(2S)$ nuclear modification at backward and forward rapidity in p+p/Al/Au collisions

Light hadron R_{AB} in small and large systems

Baryon enhancement

 $R_{AB}^{\varphi} < R_{AB}^{p}$, $m_{\varphi} \approx m_{p}$

Baryon enhancement

The ratios of K/π and p/π

The p/π ratios can be qualitatively described in the frame of coalescence models Ann. Rev. Nucl. Part. Sci. 2008. V. 58. P. 177-205

Phys. Rev. C **106**, 014908 (2022) arXiv: 2203.06087

Strangeness enhancement

Observed only in large systems?

Phys. Rev. C **106**, 014908 (2022) arXiv: 2207.10745v1

φ in Cu+Au and U+U collisions

 ϕ -meson production measured in heavy-ion collisions does not depend on the shape of the nuclear-overlap region.

The obtained ϕ –meson $\langle R_{AB} \rangle$ values are consistent across Cu+Cu, Cu+Au, Au+Au, and U+U collisions within uncertainties

The obtained ϕ -meson R_{AB} values are quantitatively described by the AMPT and iEBE-VISHNU models, which include the coalescence mechanism

PH^{*}ENIX

Phys. Rev. C **106**, 014908 (2022) arXiv: 2203.06087

φ in p/d/³He+Au collisions

- 1. Ordering $R_{HeAu} < R_{dAu} < R_{pAu}$
- 2. ϕ meson R_{xA} in p/d/³He+Au collisions are in good agreement with the string-melting version of AMPT calculations (implements coalescence model of hadronization), whereas the default version of AMPT (fragmentation hadronization model) calculations underpredict the data.

Phys. Rev. C 105, 024902 (2022) arXiv: 2111.05756

Different mechanisms might contribute to the nuclear modification at high and low p_T .

 $p_T > 8 \ GeV/c$ $\langle R_{\gamma A} \rangle$, The p/d/³He+Au collision systems follow a common trend. For AI as a target nucleus, a distinctly different trend is observed.

Shift of yield from scaled p+p to scaled ³He+Au starting around $\frac{dN_{ch}}{d\eta} > 4 to 5$

Heavy flavor energy loss

Improved precision compared to our previously published results Extend the p_T coverage down to 1 GeV/c by using the improved p+p baseline.

Unfolded charm and bottom hadron yields indicate the trend

 $E_{loss}^{c} > E_{loss}^{b}$

Result in agreement with the mass dependency of the radiative energy loss

Phys. Rev. C **105**, 6, 064912 (2022) arXiv: 2202.03863v2

$\psi(2S)$ in small systems

PH^{*}ENIX

The $\psi(2S)$ and J/ψ nuclear modification are consistent with unity

The $\psi(2S)$ and J/ψ modification in p+Au collisions at forward rapidity is well described by EPPS16 and nCTEQ15 shadowing.

Phys. Rev. C **105**, 6, 064912 (2022) arXiv: 2202.03863v2

$\psi(2S)$ in small systems

PH^{*}ENIX

The $\psi(2S)$ and J/ψ nuclear modification are consistent with unity

The $\psi(2S)$ and J/ψ modification in p+Au collisions at forward rapidity is well described by EPPS16 and nCTEQ15 shadowing.

Phys. Rev. C **105**, 6, 064912 (2022) arXiv: 2202.03863v2

$\psi(2S)$ in small systems

PH*ENIX

The $\psi(2S)$ nuclear modification results at backward rapidity may indicate final-state effects are present in the p+AI and p+Au system at RHIC energies

Collectivity in small systems

Anisotropy of charged particle production consistent with hydrodynamic expansion

Phys. Rev. C **105**, 6, 024901 (2022) arXiv: 2107.06634

Collectivity in small systems

3x2PC method - three different two-particle correlations **Consistent results between 2PC and event plane methods.**

arXiv: 2203.17187

Nonprompt direct-photon production in AuAu collisions

Direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using photon conversions to $e^+ + e^-$ pairs

- Extension up to 10 GeV/c
- 9 centrality bins

 $p_T > 4-5\,$ GeV/c Well described by Ncoll scaled pp fit and pQCD

arXiv: 2203.17187

Nonprompt direct-photon production in AuAu collisions

Direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV using photon conversions to $e^+ + e^-$ pairs

- Extension up to 10 GeV/c
- 9 centrality bins

 $p_T > 4-5\,$ GeV/c Well described by Ncoll scaled pp fit and pQCD

 $p_T < 4-5$ GeV/c Direct-photon yields excess

arXiv: 2203.17187

Nonprompt direct-photon production in AuAu collisions

 $\frac{dN_{\gamma}}{dy} = A \times \left(\frac{dN_{ch}}{d\eta}|_{\eta=0}\right)^{\alpha}$ The T_{eff} values are consistent with a constant value, independent of $\frac{dN_{ch}}{d\eta}$

Thank you for attention!