Estimators study for centrality determination in the BM@N experiment

Ilya Segal, Arkadiy Taranenko, Oleg Golosov,

Dim Idrisov, Alexandra Andomina

for the BM@N Collaboration

MEPhl

December 2nd, 2022 ICPPA-2022

Motivation

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Goal of centrality determination: map (on average) the collision geometry parameters to experimental observables (centrality estimators)
 - Glauber model is commonly used to build such connection
 - Model parameters are fixed by minimizing the difference between the model and real data distributions
- Centrality class: group of events corresponding to a given fraction (%) of the total cross section:

$$C_b = rac{1}{\sigma^{AA}_{inel}} \int_0^b rac{d\sigma}{db'} db'$$

Why several alternative centrality estimators

 MC-Glauber x NBD multiplicity fitting procedure is standard method for

centrality determination

BM@N needs this method to compare data in the least experiment dependent way

 Innovative Γ-fit method is also being considered for centrality determination based on multiplicity

Why several alternative centrality estimators

Anticorrelation between charge of the spectator fragments (FW) and particle multiplicity (hits)

HADES; Phys.Rev.C 102 (2020) 2, 024914

A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)

HADES; Phys.Rev.C 102 (2020) 2, 024914

Avoid self-correlation biases when using spectators fragments for centrality estimation

Centrality Estimators in BM@N

BM@N subsystems for centrality determination

Simulation setup

- DCM-QGSM-SMM
 M.Baznat et al. PPNL 17 (2020) 3, 303
- Xe-Cs @ 4A GeV
- Transport: GEANT4

Subsystems

- Participants: Tracking system
 GEM+STS, BD, SiMD
- Spectators: FHCal, Hodoscope, ScWall, FD

MC-Glauber + NBD fitting procedure

MC-Glauber + NBD fitting procedure

MC-Glauber + NBD fitting procedure

Implementation for MPD: <u>https://github.com/FlowNICA/CentralityFramework</u>

MC-Glauber fit result Xe-Cs @ 4.0 AGeV

 χ^2 =1.31±0.07; f=0.9, μ =0.786293, k=1; MinFitBin=10, MaxFitBin=250

- Fit result is good
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

The Bayesian inversion method (Γ -fit): main assumptions

 $\mbox{.}$ Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$\frac{\sigma^2}{\left\langle N_{ch}\right\rangle} = \theta \simeq const$$

$$\langle N_{ch} \rangle = N_{knee} \exp\left(\sum_{j=1}^{3} a_j c_b^j\right)$$
 ,

$$k = \frac{\langle N_{ch} \rangle}{\theta}$$

Five fit parameters

$$N_{knee}, \theta, a_j$$

11

Reconstruction of b

Normalized multiplicity distribution P(N_{ch})

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

• Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(b|N_{ch}) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

The Bayesian inversion method consists of 2 steps:

Fit normalized multiplicity distribution with P(N_{ch})
 Construct P(b|N_{ch}) using Bayes' theorem with parameters from the fit

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation for MPD and BM@N by D. Idrisov: <u>https://github.com/Dim23/GammaFit</u> Example of application in MPD: **P. Parfenov et al., Particles 4 (2021) 2, 275-287**

MC-Glauber Γ-fit result Xe-Cs @ 4.0 AGeV

- Fit result is good
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

Possibilities of spectators fragments as estimators

- FHCal energy and Hodoscope charge distributions have partial correlation with impact parameter
- For example, impact parameter at 6 fm might be used as threshold for simulations
- Corresponding physical threshold could be Hodoscope signal $E_{Hodo} = 0.04$

Possibilities of spectators fragments as estimators

Possibilities of spectators fragments as estimators

Comparison of different estimators and methods

- Impact parameter distributions in different centrality classes are similar for different centrality estimators
- These distributions for spectators energy is wider because of the width of b and energy correlation

Summary

- MC Glauber and inverse bayesian fitting procedures are developed for multiplicity
- Relation between impact parameter and centrality classes is extracted
- Software implementation of the procedures is ready and also used in MPD
- Possibilities of using of forward detectors for centrality determination was studied
- Main tasks was detected: improvement of the width of impact parameter and energy distributions, validation of FHCal x Hodoscope energy distribution

Work in progress

- Apply centrality determination procedures based on multiplicity for simulations of lower energies collisions
- Continue work on preparing of centrality determination procedure based on spectators energy

Backup

MC Glauber model

MC Glauber model provides a description of the initial state of a heavy-ion collision

- Independent straight line trajectories of the nucleons Ο
- A-A collision is treated as a sequence of independent binary NN collisions Ο
- Monte-Carlo sampling of nucleons position for individual collisions Ο

Main model parameters

Result of the fitting

SMM description of the ALADIN's fragmentation data

A.S. Botvina et al. NPA 584 (1995) 737

R.Ogul et al. PRC 83, 024608 (2011)

Mass number of fragments sampling for given event: new procedure

Population of fragments with energy and rapidity

- Energy and rapidity distributions have different shapes for different fragment mass
- Shapes are used as input for sampling energy & rapidity values for each fragment

Respond of FHCal detector

• Mean of signal has linear dependency with beam energy

NA61/SHINE experimental setup

PSD detector layout

Full mode procedure (example for NA61)

- Scaling along both X and Y axis is applied
- Form of energy distribution is reproducible

MC-Glauber+Spectators fitting procedure

Light mode procedure fit (example for NA61)

 χ^2 =18.1891±0.365028; μ =12.4943, k=8.9; MinFitBin=17 (200 GeV), MaxFitBin=250 (3000 GeV)

- Produced particles affect form of full PSD distribution
- Light mode maybe needs some additional parameters

NBD at different values of k

MC Glauber fit results are in good agreement with simulated input

Centrality determination using STS multiplicity

Distribution provides connection between

centrality class (multiplicity range, M $\pm \Delta$ M) and impact parameter range (b $\pm \sigma_{\rm b}$)