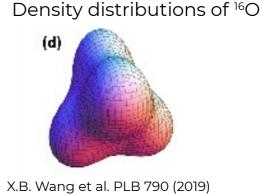
Clustering in oxygen nuclei and spectator fragments in ¹⁶O–¹⁶O collisions at the LHC

<u>Aleksandr Svetlichnyi</u>^{1,2,*)}, Savva Savenkov^{1,2)}, Roman Nepeivoda^{1,3)}, Igor Pshenichnov^{1,2)} ¹⁾INR RAS, ²⁾MIPT(NRU) ³⁾Lund Univ.

^{*)}aleksandr.svetlichnyy@phystech.edu



Motivation

- A short ¹⁶O–¹⁶O run is planned at the LHC to explore small systems ¹⁾
- The initial cluster structure of ^{16}O may impact the eccentricity, flow, and R_{AA} for D-mesons $^{2),3),4),5)}$
- The production of alpha-particles is affected by the initial cluster structure of ¹⁶O ⁶⁾. The accounting for short range nucleon-nucleon correlations (SRC) affects the production of deuterons ⁷⁾
- Spectator fragments with the Z/A-ratio similar to ¹⁶O can be transported in the LHC along with initial nuclei
- Modelling of ¹⁶O fragmentation, in particular the yields of alphas, should be improved ⁸⁾ to evaluate these effects

https://indico.cern.ch/event/975877/
Yi-An Li et al., PRC 102 (2020) 054907
W. Broniowski et al., NPA 1005 (2021) 121763
R.Katz et al., PRC 102 (2020) 041901
S. H. Lim et al, PRC 99 (2019) 044904
A.S. et al., Phys. of Atomic Nucl. 86 (2022) TBP
N.Kozyrev et al., Eur. Phys J. A 58 (2022) 184
A.S. et al., PoS EPS-HEP2021 (2022) 310

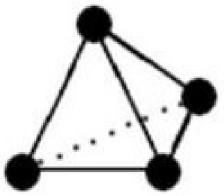
498-501

Outline

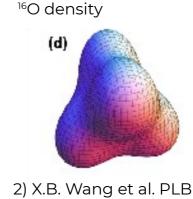
- Abrasion-Ablation Monte Carlo for Colliders (AAMCC)
- Comparison with the data on fragmentation of ¹⁶O in nuclear emulsion
- Production of spectator matter in ¹⁶O-¹⁶O collisions at the LHC:
 - free spectator neutrons
 - deuterons
 - secondary nuclei

Abrasion-Ablation Monte Carlo for Colliders

- Nucleus-nucleus collisions are simulated by means of the Glauber Monte Carlo model¹). Non-participated nucleons form spectator matter (prefragment)
- Excitation energy of prefragment is calculated by parabolic ALADIN approximation ²⁾ tuned to describe the data for light nuclei.
- Decays of prefragments are simulated as follows:
 - pre-equilibrium decays modelled with MST-clustering algorithm ³⁾
 - Fermi break-up model from Geant4 v9.2⁴⁾
 - Weisskopf-Ewing evaporation model $\varepsilon^* = \varepsilon_0 \sqrt{1 c_0 \frac{A_{pf.}}{A}}$ from Geant4 v10.4 4
- 1) C. Loizides, J.Kamin, D.d'Enterria Phys. Rev. C **97** (2018) 054910
- 2) A. Botvina et al. NPA **584**
- 3) R. Nepeivoda, et al., Particles 5 (2022) 40
- 4) J. Alison et al. Nucl. Inst. A **835** (2016) 186

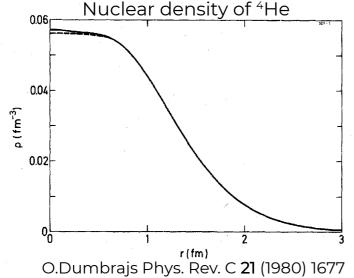

github.com/Spectator-matter-group-INR-RAS/AAMCC

4

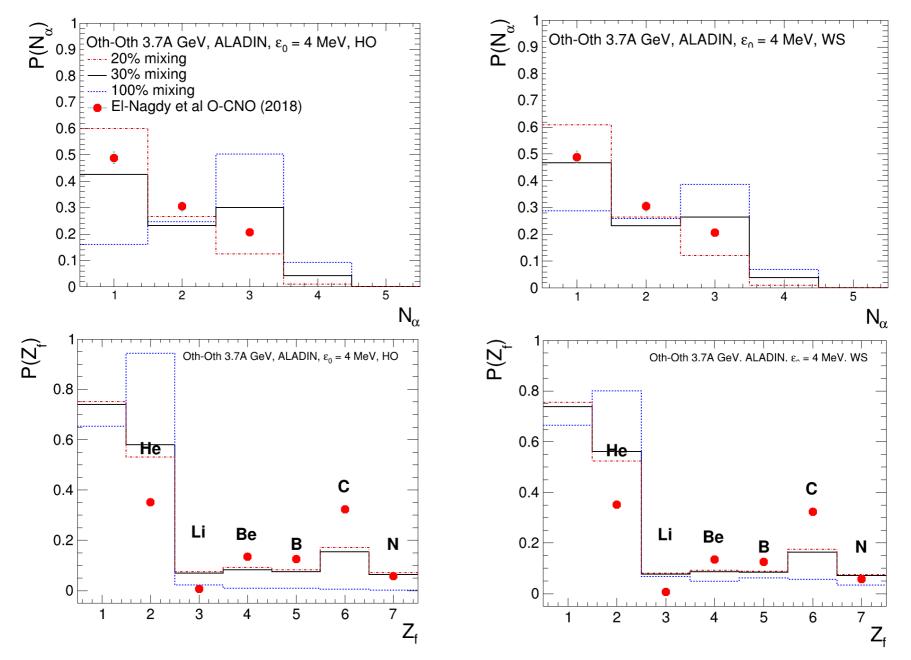

Clusterisation in ¹⁶O

- Some authors assume that 8 neutrons and 8 protons form four alpha-clusters arranged into a tetrahedron ^{1,2)}
- Parameters of the tetrahedron should fit the charge radius of ¹⁶O nucleus
- There are other free parameters for clustered ¹⁶O:
 - The distribution of nucleons inside alpha-clusters
 - The overall contribution of the clustered state 20-30%

Arrangement of clusters in ¹⁶O


1) R. Bijker and F. Iachello, Phys. Rev. Lett. (2014) 112, 152501

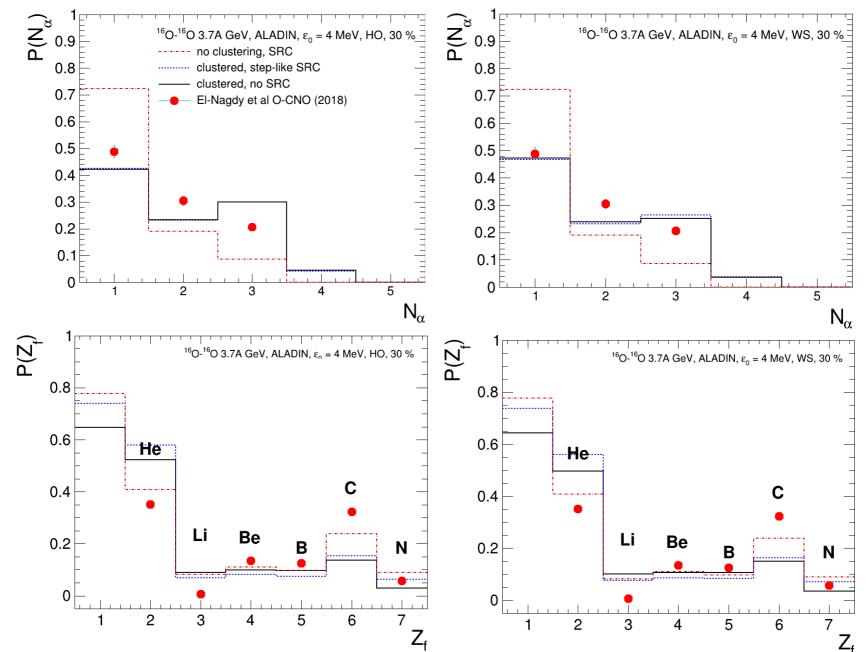
2) X.B. Wang et al. PLB 790 (2019) 498–501


Sampling nucleon configurations in ¹⁶O

- Main algorithm exploits Monte Carlo Markov Chain. The Pauli blocking is represented by the exclusion of the finite volume of nucleons.
- The centres of alpha-clusters are arranged first in the vertices of the tetrahedron
- Second, the positions of nucleons inside each cluster are sampled according to one of three options: Gaussian, Woods-Saxon distribution and Harmonic oscillator parametrisation.
- Non-clustered state is parametrised by Harmonic oscillator.

Alpha-cluster density is assumed to be similar to the ⁴He

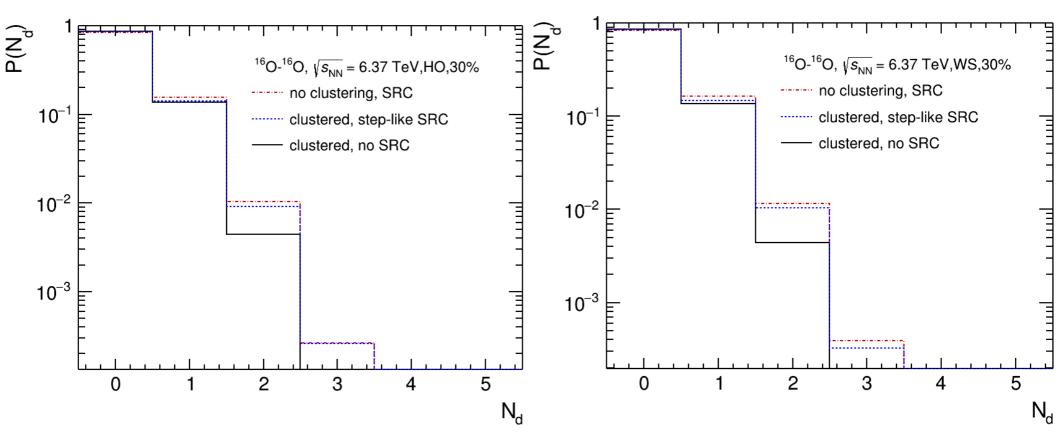
¹⁶O fragmentation in nuclear emulsion



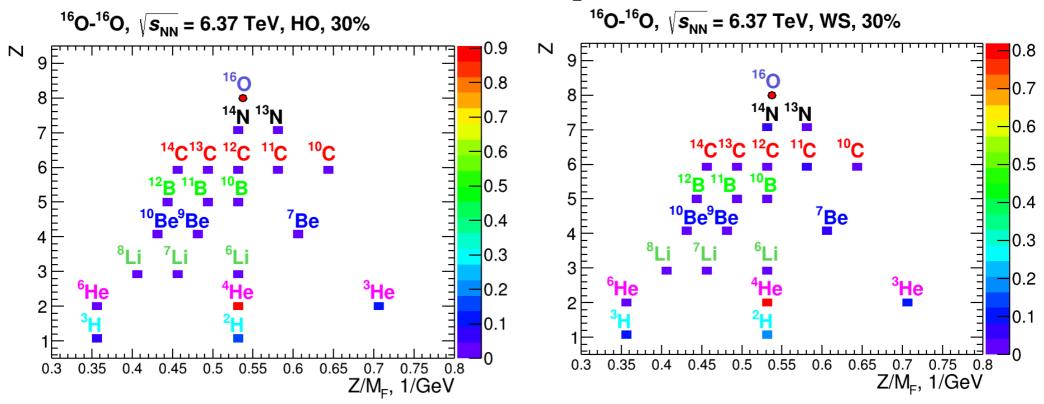
M. El-Nagdy et al., J. Phys. Comm. 2 (2018) 035010 A.S. et al., Phys. of Atomic Nucl. 86 (2022) TBP AAMCC describes the data in general with 30% clustering contribution

Short range nucleon-nucleon correlations (SRC)

- Following the papers ^{1,2)}, SRC represent the nucleon-nucleon repulsion caused, in particular, by Pauli principle.
- To account for SRC a method based on Monte Carlo Markov Chain²⁾ was suggested. Two nucleon-nucleon correlation functions can be used: Gaussian or step-like.
- We employ the step-like function to speed up the sampling
- The number of participants is slightly increased with accounting for SRC¹. The deuterium production is enhanced in Pb-Pb collisions³. One can expect a similar effect in O-O collisions.

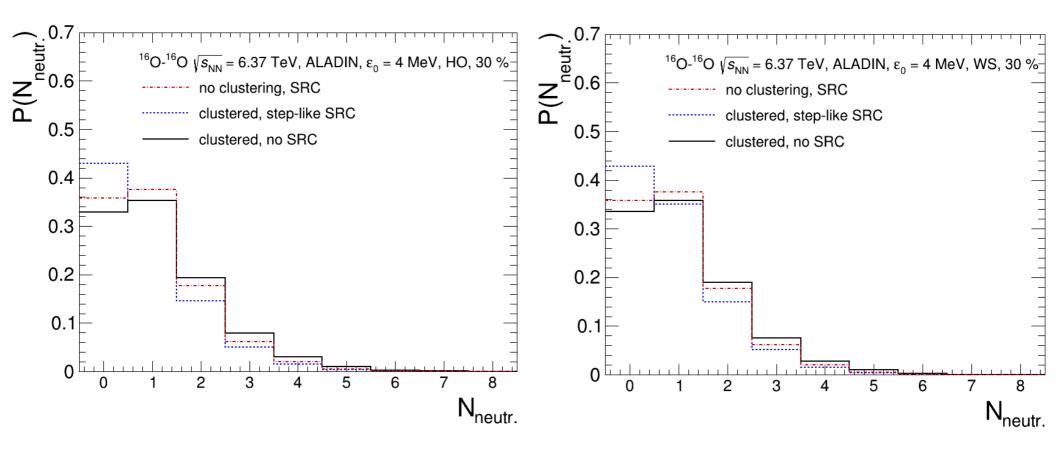

¹⁶O fragmentation in nuclear emulsion: SRC

The distributions of alphas are not described without clustering Accounting for SRC improves agreement with the data on Li – N


Spectator fragments at the LHC

Production of deuterons at the LHC

- Up to 85% of O–O events are without deuterons, while ~15% of the events have only one deuteron
- The calculated multiplicity distributions of deuterons are almost the same for all nuclear density parametrisations. Accounting for SRC enhances the multiple production of deuterons.
- Deuterons are mostly produced in peripheral events


Production of secondary nuclei at the LHC

- M_f is taken from the nuclear data tables ¹⁾
- Various isotopes of **He, Be, B, C, N** are produced. (Almost all the O nuclei transmutate to other elements.)
- In contrast to previous calculations ²⁾, the most frequent nucleus is ⁴He rather than ²H
- Exotic nuclei ⁶He, ¹²B and ¹⁰C are produced by asymmetric abrasion of protons or neutrons

Note the various isotopes with Z/M_f close to ¹⁶O: ¹⁴N, ¹²C, ¹⁰B, ⁶Li, ⁴He 1) JAEA Tables of Nuclear Data 2) A.S. et al., POS EPS-HEP2021 (2022) 310

Production of neutrons at the LHC

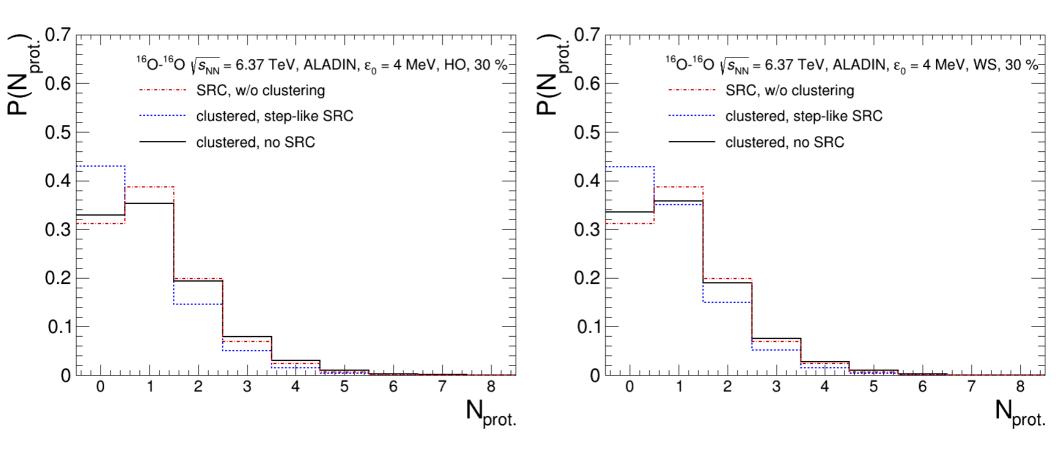
- The highest neutron multiplicity is calculated with clustered density without SRC
- Note a large (>30%) fraction of events without spectator neutrons
- A slightly larger fraction of events without neutrons is calculated for the clustered density with the step-like SRC

Summary

 The production of the spectator neutrons slightly depends on the ¹⁶O density parametrisation. A large fraction of events without neutrons (>30%) was predicted.

• The multiple production of deuterons is sensitive to the SRC.

 Various isotopes can be formed in the collisions of ¹⁶O–¹⁶O. The intranuclear clustering results in the highest yield of ⁴He.


To conclude, an artists view of the oxygen nuclei fragmentation

Liubov Popova, Folio from 5 x 5 = 25: Vystavka zhivopisi, 1921

Backup slides

Production of protons at the LHC

- The highest proton multiplicity is predicted for clustered without SRC nuclear density, same for non-clustered one.
- Note a large (~30%) fraction of events without protons
- A slightly larger fraction of events without protons is calculated for the clustered density with step-like SRC