

Study of the second order azimuthal anisotropy for π^0 mesons in Cu+Au collisions at $\sqrt{S_{NN}} = 200 \, GeV$

E.V. Bannikov, A.Ya. Berdnikov, Ya.A. Berdnikov, D.O. Kotov, Iu.M. Mitrankov, M.M. Mitrankova, D.M. Larionova Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia

0

 Azimuthal anisotropy is one of the main observables allowing to investigate the properties of QGP.

*Agnes Mocsy(Pratt Inst. and Frankfurt U., FIAS), Paul Sorensen(Brookhaven) (Aug, 2010)

ICPPA2022

CENTRALITY.

a) Central collisions;b) Peripheral collisions.b – impact parameter.

participants

REACTION PLANE (RP).

 $\begin{array}{l} \phi-\text{ particle angle,} \\ z-\text{ beam direction,} \\ b-\text{ impact parameter,} \\ \Psi_{RP} \text{ - reaction plane angle.} \end{array}$

- Two central arms (East and West);
- Located at Brookhaven National Laboratory (BNL) at the RHIC;

18.5 m = 60 ft

- Two central arms (East and West);
- Located at Brookhaven National Laboratory (BNL) at the RHIC;
- The kinematic properties of the photons are determined using the electromagnetic calorimeter (EMCal);
- EMCal consists of 6 lead-scintillator (PbSc) and 2 leadglass (PbGI) sectors.

* A. Adare et al. 2010 Phys.Rev.Lett.105:142301

a – invariant mass distribution for total pairs (black line), background (BG – red line) and signal (blue points fitted with Gaussian);

b – ratios N_{BG}/N_{pair} (red line), N_{signal}/N_{pair} (black line);

c – the fit to v_2^{pair} (black line) and to v_2^{BG} (red line).

* A. Adare *et al.* 2013 *Phys.Rev.C* 88, 064910

1. v_2 for φ , π^{\pm} and for p/\bar{p} as a function of kinetic energy (kE_T) and those scaled with number of quarks (n_q) in Cu+Au collisions at 200 GeV

* lu M Mitrankov et al 2021 J. Phys.: Conf. Ser. 2103 012133

2. Charged hadrons as a function of transverse momentum (p_T) in Cu+Cu, Cu+Au and Au+Au collisions at 200 GeV

^{*} A. Adare et al. 2016 Phys. Rev. C 94, 054910

3. Previously measured dependency scaled with eccentricity and the third root of the number of participants nucleons ($\varepsilon_2 N_{part}^{1/3}$)

^{*} A. Adare et al. 2016 Phys. Rev. C 94, 054910

ICPPA2022

4. v_2 for π^0 and η as a function of transverse momentum (p_T) in Au+Au collisions at 200 GeV

 v_2 for π^0 values decreases gradually for $3 \le p_T \le 7 - 10 \ GeV/c$;

There are nonzero v_2 for π^0 values at high $p_T > 5 \ GeV/c$.

* A. Adare et al. 2010 Phys.Rev.Lett.105:142301

Summary:

The scaling of v_2 for π^{\pm}, φ and p/\bar{p} with n_q was observed in Cu+Au collisions at 200 GeV; It may indicate that the elliptic flow occurs in QGP. The v_2 for charged hadrons in Cu+Cu, Cu+Au, Au+Au collisions scaling with $\varepsilon_2 N_{part}^{1/3}$ do not depend on initial size of the system; This fact means that the impact collision geometry on the elliptic flow can be considered by scaling it with $\varepsilon_2 N_{nart}^{1/3}$. The v_2 for π^0 is well-measurable up to high $p_T > 5 GeV/c$.

It might be explained in terms of QGP model predictions, assuming partonic energy loss.

Summary:

The scaling of v₂ for π[±], φ and p/p̄ with n_q was observed in Cu+Au collisions at 200 GeV; *It may indicate that the elliptic flow occurs in QGP.*The v₂ for charged hadrons in Cu+Cu, Cu+Au, Au+Au collisions scaling with ε₂N^{1/3}_{part} do not depend on initial size of the system; *This fact means that the impact collision geometry on the elliptic flow can be considered by scaling it with* ε₂N^{1/3}_{nart}.

The v_2 for π^0 is well-measurable up to high $p_T > 5 \ GeV/c$.

It might be explained in terms of QGP model predictions, assuming partonic energy loss.

The analysis devoted to the measurement of v_2 for π^0 in Cu+Au collisions is in progress. Stay tuned!