

# Bose–Einstein correlations of charged pions in Au+Au collisions at $\sqrt{s}_{\rm NN}=3~{\rm GeV}$ from UrQMD

<u>Anna Kraeva</u>, Grigory Nigmatkulov National Research Nuclear University MEPhI ICPPA-2022. December 01, 2022

1

#### Motivation:

- The energy dependence of femtoscopic scales may reveal fundamental insights into the QGP equation of state
- The low energy results help to reveal the structure of particle-emission region, where deconfinement is not expected

#### Goals:

- Estimation of spatial and temporal parameters of the particle-emittion region in Au+Au collisions at  $\sqrt{s_{_{NN}}} = 3$  GeV using the UrQMD model
- The results from UrQMD will be used in future to compare with the data from STAR experiment.



# **Fundamentals of femtoscopy:**



# How to construct the two-particle correlation function?

 $C(q) = \frac{A(q)}{B(q)} \xrightarrow{\checkmark} A(q) \quad \text{-formed using pairs, where both tracks are from the same event. It contains quantum-statistical correlations (QS)}_{B(q)} \xrightarrow{\checkmark} B(q) \quad \text{-formed using pairs, where QS are absent}$ 



MC generators do not contain QS correlations. Femtoscopic weight could be added as:  $1 + \cos(q\Delta r)$  where  $\Delta r$  is a relative four-coordinate of particles from a pair.





#### **Experimentally observed:**

- $R_{side}$  and  $R_{out}$  decrease with increasing  $m_T$  due to transverse flow
- R<sub>long</sub> decrease due to longitudinal flow

#### **Theoretical basis:**

• correspond to regions of homogeneity

What will be presented in this analysis? The k<sub>T</sub> and centrality dependencies of R<sub>out</sub>, R<sub>side</sub>, R<sub>long</sub>

#### <u>1st step of analysis:</u> integrated rapidity ranges of pairs



#### CF of positive and negative pion pairs and their ratio



The correlation functions of identical positive and negative pions are similar.

ICPPA-2022, Kraeva Anna

#### CF of positive and negative pion pairs and their ratio



### $\mathbf{k}_{\mathrm{T}}\text{-}\mathrm{dependence}$ of CF of positive and negative pion pairs



#### Centrality dependence of CF of positive and negative pion pairs



## Charged pion femtoscopic radii



Estimated femtoscopic radii for positive and negative pions decrease with increasing  $k_{T}$ . Femtoscopic radii depend on centrality: the smaller the centrality, the greater the radius.



Rapidity dependence of CF of positive and negative pion pairs



#### Charged pion femtoscopic radii in rangers of pair rapidity



R<sub>out</sub>, R<sub>side</sub> for positive and negative pions have weak rapidity dependence
R<sub>long</sub> seems to have rapidity dependence

# Summary

- Femtoscopic analysis of charged pions produced in Au+Au collisions at  $\sqrt{s_{_{NN}}} = 3 \text{ GeV}$  was performed using UrQMD
- Three-dimensional correlation functions of identical charged pions are studied for 5  $k_T$  bins, for 3 centrality bins and for 4 pair rapidity intervals
- The transverse momentum and rapidity dependence of femtoscopic radii ( $R_{out}$ ,  $R_{side}$ ,  $R_{long}$ ) was estimated:
  - $k_T$ -dependence: radii decrease with increasing  $k_T$  due to flow
  - $\circ$  y-dependence:
    - $R_{out}$  and  $R_{side}$  weak (if any) rapidity dependence
    - $R_{long}$  seems to have weak rapidity dependence.