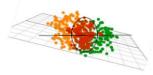
Investigation of the correlation between mean transverse momentum and anisotropic flow at NICA energy range

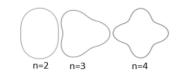
Idrisov Dim¹, Peter Parfenov^{1,2}

- 1. National Research Nuclear University (MEPhI), Moscow, Russia
- 2. Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

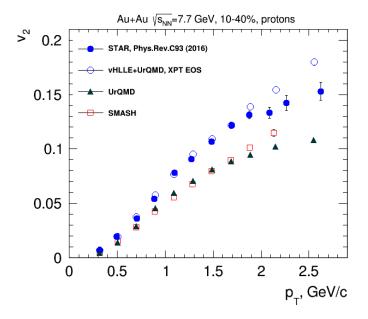
The 6th International Conference on Particle Physics and Astrophysics MEPhI, Moscow

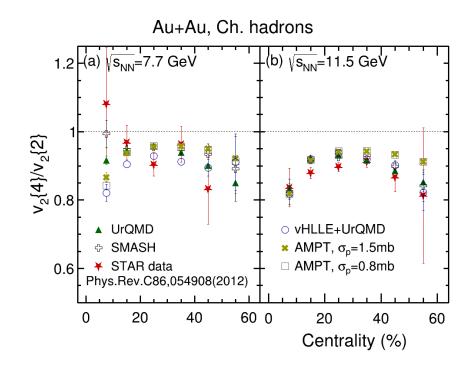

29.11-02.12.2022

Outline


- Introduction
- Method for the transverse momentum-flow correlations measurements
- Comparison with published data
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for different models
- Summary and outlook

Elliptic flow at NICA energies


$$\frac{dN}{d\varphi} \sim 1 + \sum_{n=1} v_n \cos \left[n \left(\varphi - \Psi_n \right) \right],$$



$$v_{2}\{2\} = \sqrt{\langle e^{i2(\phi_{1}-\phi_{2})}\rangle}, \quad v_{2}\{4\} = \sqrt[4]{\langle e^{i2(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})}\rangle - 2\langle e^{i2(\phi_{1}-\phi_{2})}\rangle^{2}}$$

• v_2 is sensitive to the properties of strongly interacting matter:

 At √s_{NN} ≥ 7.7 GeV pure string/hadronic cascade models underestimate v₂ – need hybrid models with QGP phase (vHLLE+UrQMD, AMPT SM)

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

The correlation coefficient

The correlation coefficient defined as

$$\rho(\mathbf{v}_2^2, [p_T]) = \frac{\operatorname{cov}(\mathbf{v}_2^2, [p_T])}{\sqrt{\operatorname{var}(\mathbf{v}_2^2)} \sqrt{c_k}}$$

where
$$\operatorname{var}\left(\mathbf{v}_{2}^{2}\right)_{\operatorname{dyn}} = \left\langle \mathbf{v}_{2}^{4} \right\rangle - \left\langle \mathbf{v}_{2}^{2} \right\rangle^{2} = \left\langle \left\langle 4 \right\rangle \right\rangle \Big|_{A,C} - \left\langle \left\langle 2 \right\rangle \right\rangle^{2} \Big|_{A,C}$$

$$\langle\langle 2\rangle\rangle\Big|_{A,C} = \langle\langle e^{i\cdot 2(\varphi_1^A - \varphi_2^C)}\rangle\rangle = \frac{\mathbf{Q}_{2,A}\mathbf{Q}_{2,C}^*}{\mathbf{M}_A\mathbf{M}_C},$$

$$\left\langle \left\langle 4\right\rangle \right\rangle \Big|_{A,C} = \left\langle \left\langle e^{i\cdot 2\left(\varphi_{1}^{A} + \varphi_{2}^{A} - \varphi_{3}^{C} - \varphi_{4}^{C}\right)}\right\rangle \right\rangle = \frac{\left(\mathbf{Q}_{2,A}^{2} - \mathbf{Q}_{4,A}\right)\left(\mathbf{Q}_{2,C}^{2} - \mathbf{Q}_{4,C}\right)^{*}}{M_{A}\left(M_{A} - 1\right)M_{C}\left(M_{C} - 1\right)}$$

$$Q_{n,A/C} = \sum_{k} e^{i \cdot n \varphi_k^{A/C}}$$
 - flow vector for A/C sub event

 $M_{\scriptscriptstyle A/C}$ - multiplicity of particles

$$-1 < \eta < -0.35$$
 $|\eta| < 0.35$ $0.35 < \eta < 1$

A B C

to suppress non-flow effects, the two sub-events method was used

In the study were used charged particles with $0.2 < p_{_T} < 2.0~{\rm GeV/c}$

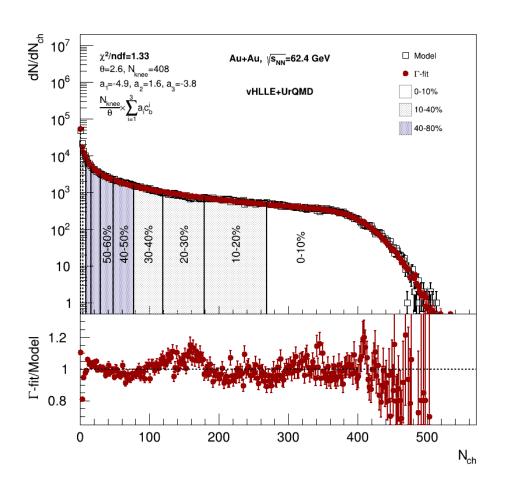
The correlation coefficient 2

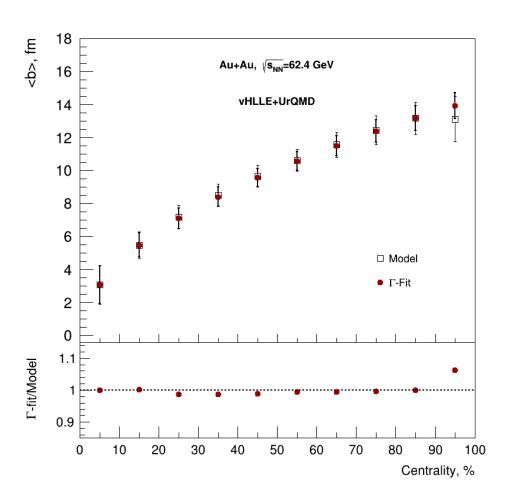
The variance of the mean transvers momentum, taking into account autocorrelations, is defined as

$$c_{k} = \left\langle \frac{1}{M_{B}(M_{B}-1)} \sum_{B} \sum_{B' \neq B} \left(p_{T,B} - \left\langle \left[p_{T} \right] \right\rangle \right) \left(p_{T,B'} - \left\langle \left[p_{T} \right] \right\rangle \right) \right\rangle$$

where
$$[p_T] = \sum_{i=1}^{M_B} p_{T,i} / M_B$$

to suppress non-flow and autocorrelation effects $\text{in the } \operatorname{cov}(\mathbf{v}_2^2,[p_T]) \text{ the three-subevents method was used }$

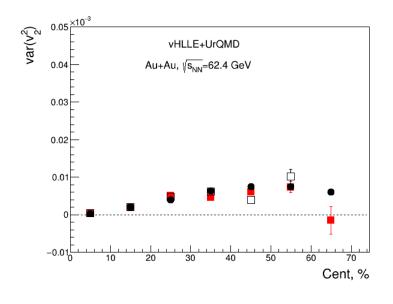

$$\operatorname{cov}\left(\mathbf{v}_{2}^{2}, \left[p_{T}\right]\right) = \left\langle \frac{\sum_{A,C} e^{i\cdot2\left(\varphi_{1}^{A}-\varphi_{2}^{C}\right)} \sum_{B} \left(p_{T,B} - \left\langle \left[p_{T}\right]\right\rangle\right)}{M_{A}M_{C}M_{B}} \right\rangle$$

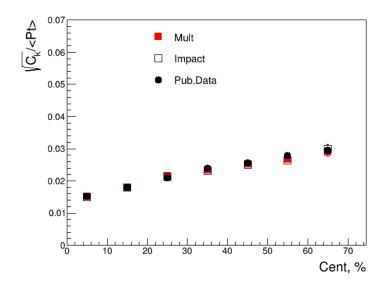

$$-1 < \eta < -0.35$$
 $|\eta| < 0.35$ $0.35 < \eta < 1$

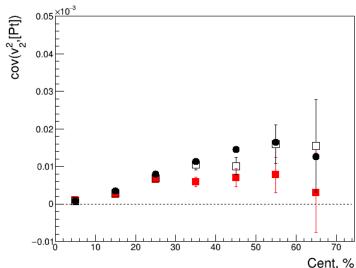
Motivation of the work

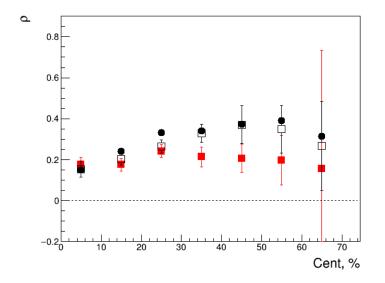
- \triangleright The $\rho(v_2^2, [p_T])$ is sensitive to initial state and its entropy density profile
- \triangleright The $\operatorname{cov}(\mathbf{v}_2^2,[p_T])$ and $\operatorname{var}(\mathbf{v}_2^2)$ are sensitive to η/s
- The precise set of measurements for $var([p_T])$, $var(v_2^2)$, $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ as a function of beam-energy and centrality, could aid precision extraction of the temperature and baryon chemical-potential dependence of η/s

Centrality for Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV in vHLLE+UrQMD

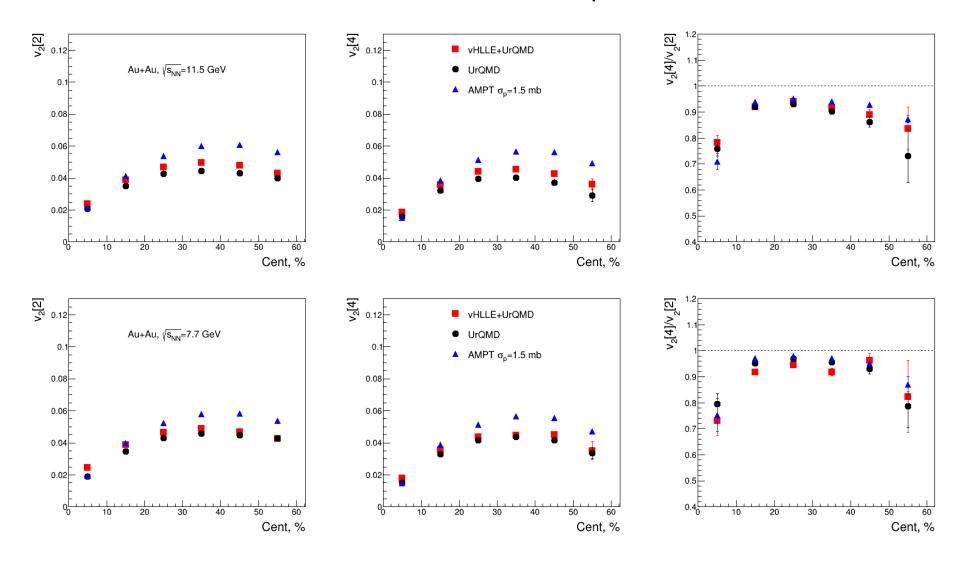





The reasonable fit quality and good agreement of the impact parameter distribution with the model data. For centrality determination the Inverse Bayes approach was used.

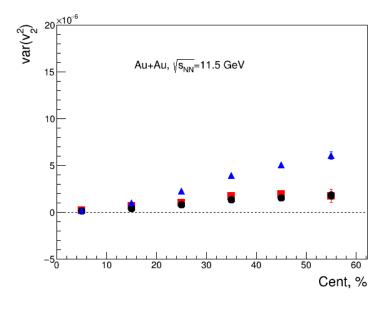

Comparison of correlation coefficient with published results

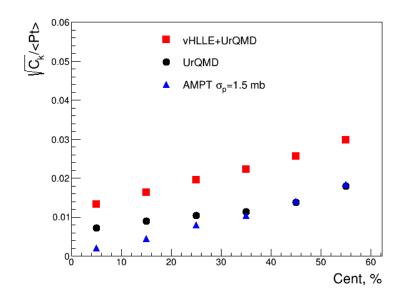
The published data taken from: Niseem Magdy et. al. Published in: Phys.Rev.C 105 (2022) 4, 044901

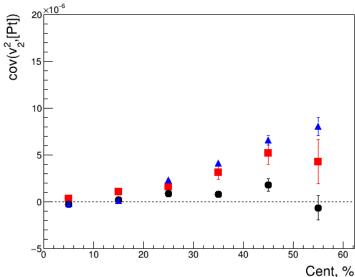

Filled red squares: multiplicity-based centrality

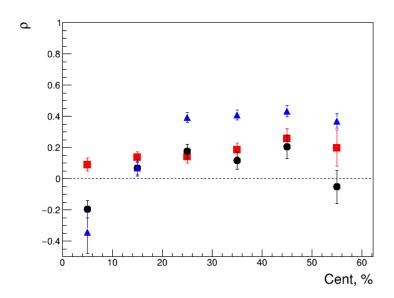
Open black squares: b-based centrality

- A good agreement between published data and results with b-based centrality
- The $cov(v_2^2, [p_T])$ is sensitive to the multiplicity fluctuations

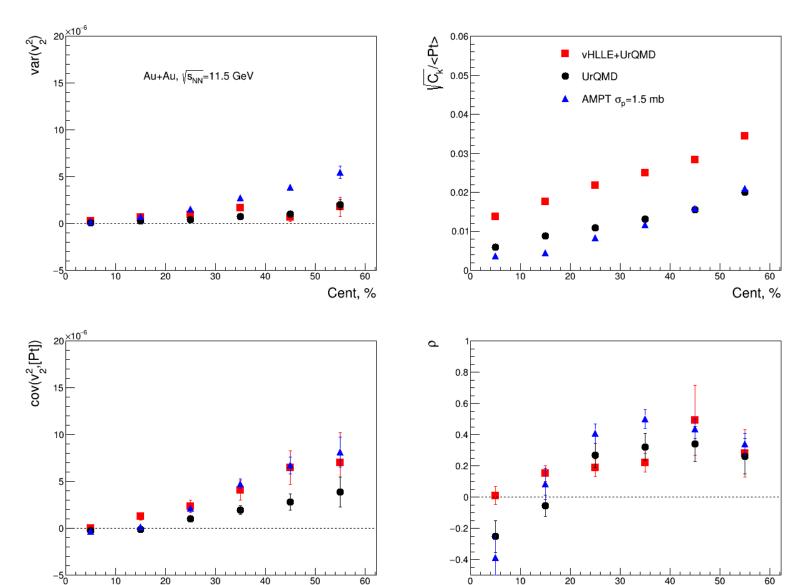

The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ depend on the centrality determination method.


Elliptic flow and its fluctuations at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV




The flow fluctuations are model independent and decrease with decreasing energy.

The transverse momentum-flow correlations at $\sqrt{S_{NN}}$ =11.5 GeV

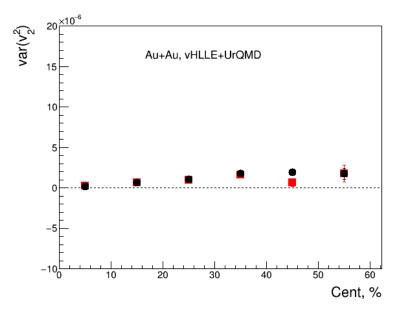


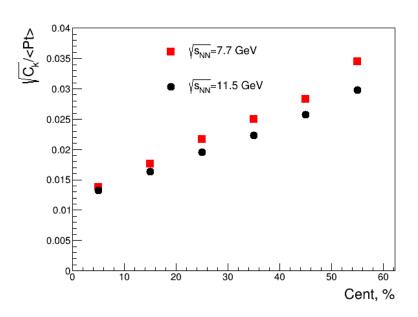
- $\rho(v_2^2, [p_T])$ decreases in the most central collisions due to the eccentricity decreases faster compared to changes in elliptic area.
- $ho(v_2^2,[p_T])$ from vHLLE+UrQMD and UrQMD are consistent with each other due to the same initial state
 - $\rho(v_2^2, [p_T])$ is sensitive to initial state
- $cov(v_2^2, [p_T])$ from vHLLE+UrQMD and AMPT are consistent due to QGP phase
 - $cov(v_2^2, [p_T])$ is sensitive to thermalization (η /s, etc.)

The transverse momentum-flow correlations at $\sqrt{S_{NN}}$ =7.7 GeV

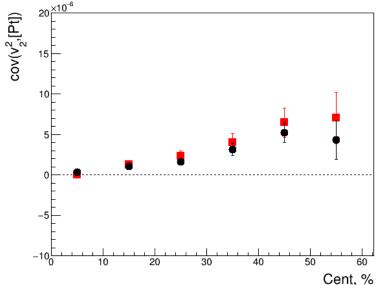
Cent, %

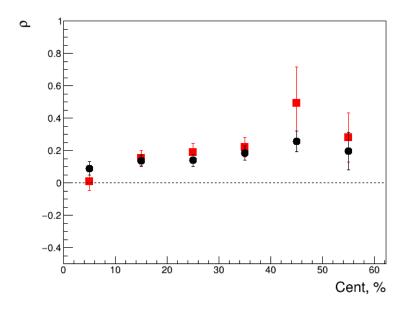
Cent, %

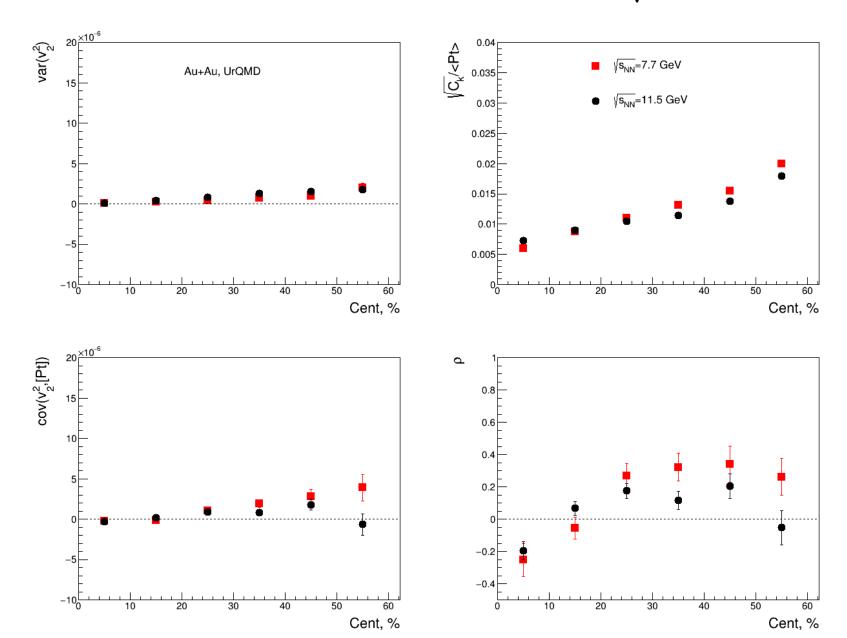

- The same trends as for $\sqrt{S_{NN}}$ =11.5 GeV
- The var(v₂²) decrease with decreasing energy
- More statistics are needed to get more accurate results


Summary and outlook

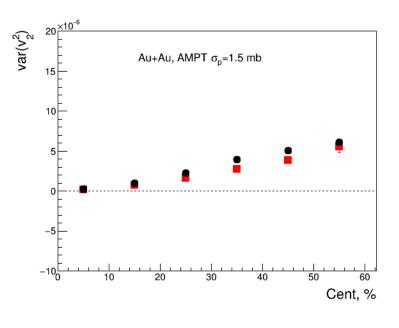
- A good agreement between published data and results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ = 62.4 GeV with b-based centrality for $\text{cov}(\mathbf{v}_2^2, [p_T])$ and $\rho(\mathbf{v}_2^2, [p_T])$
 - The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ depend on the centrality determination method
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for AMPT, UrQMD, and vHLLE+UrQMD
 - $\rho(v_2^2, [p_T])$ from vHLLE+UrQMD and UrQMD are consistent with each other due to the same initial state
 - $cov(v_2^2, [p_T])$ from vHLLE+UrQMD and AMPT are consistent due to QGP phase simulation
 - $\rho(v_2^2, [p_T])$ decreases in the most central collisions
 - for the first time, results were obtained at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV
- Investigate beam-energy and event-shape dependence of the ${
 m v}_2^2-[p_T]$ correlation using vHLLE+UrQMD model
- Study sensitivity of $v_2^2 [p_T]$ correlation to different equation of states in models within mean-field approach at lower beam energies

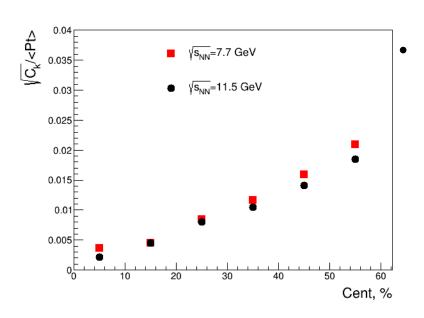

Thank you for your attention!

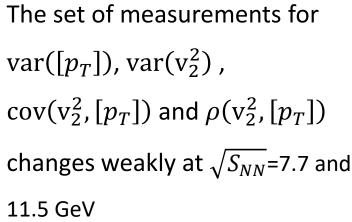

The results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

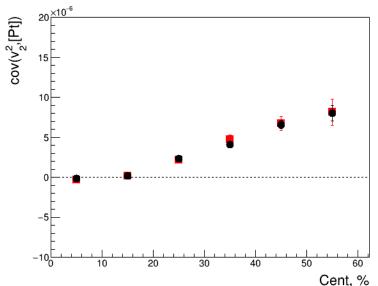


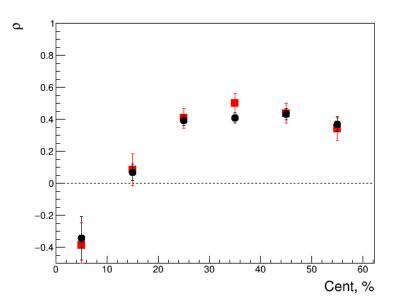
- The $\text{cov}(\mathbf{v}_2^2,[p_T])$ and $\rho(\mathbf{v}_2^2,[p_T]) \text{ changes weakly at}$ $\sqrt{S_{NN}} = 7.7 \text{ and } 11.5 \text{ GeV}$
- The $\sqrt{c_k}/\langle p_T \rangle$ increases with decreasing energy.

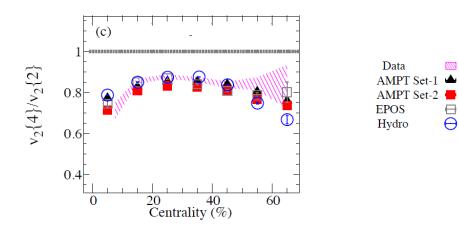


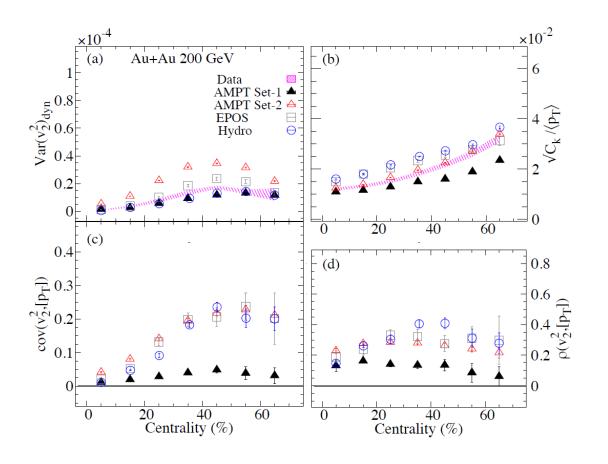

The results for UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV




• Do the $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ increases with decreasing energy due to non-flow effects?

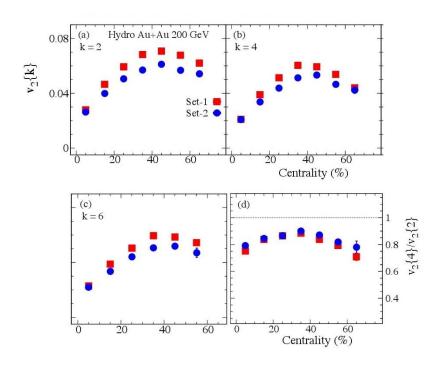

The results for AMPT at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV

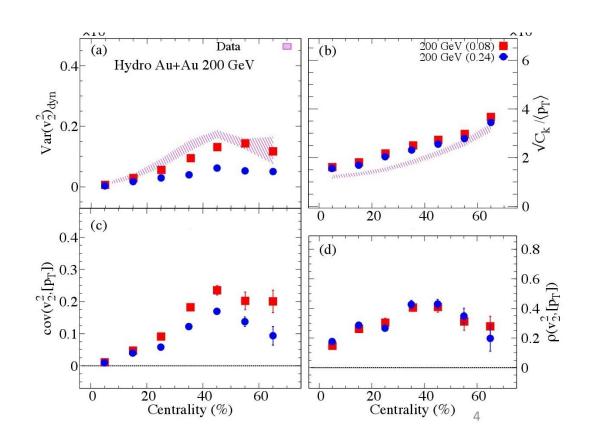



Summary and outlook

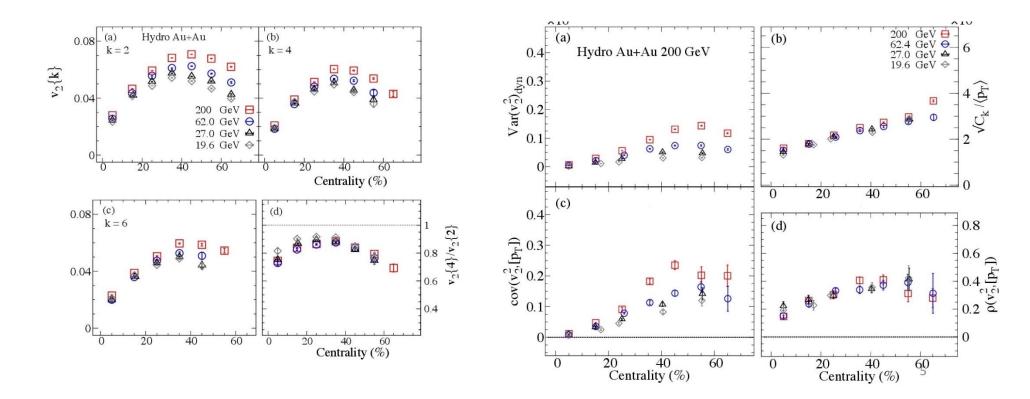
- A good agreement between published data and results for vHLLE+UrQMD at $\sqrt{S_{NN}}$ = 62.4 GeV with b-based centrality for $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$
 - The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ depend on the centrality determination method
- The results at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV for AMPT, UrQMD, and vHLLE+UrQMD
 - The $\rho(v_2^2, [p_T])$ vs. centrality for vHLLE+UrQMD at $\sqrt{S_{NN}}$ =7.7 and 11.5 shows the similar trends as for BES energies.
 - $\rho(v_2^2, [p_T])$ <0 for the most central collisions in UrQMD and AMPT models at $\sqrt{S_{NN}}$ =7.7 and 11.5 GeV
- Investigate beam-energy and event-shape dependence of the ${
 m v}_3^2-[p_T]$ correlation using vHLLE+UrQMD model
- Study sensitivity of ${\bf v}_2^2-[p_T]$ correlation to different equation of states in models within mean-field approach at lower beam energies

Transverse momentum-flow correlations


Models	Initial stage conditions	η/s
AMPT	Glauber-like & SM-ON	0.10
AMPT	Glauber-like & SM-OFF	0.10
EPOS	Described in terms of flux tubes computed based on Gribov-Regge multiple scattering theory	0.08
Hydro	Woods-Saxon distributions Glauber-like Initial conditions	(BES)

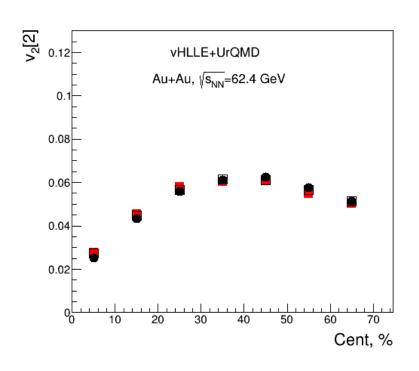


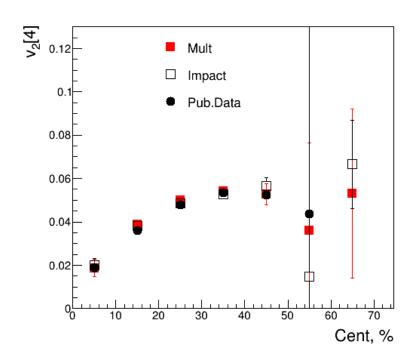
- ightharpoonup The $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$ show agreement between AMPT (SM) and EPOS
- Smaller $cov(v_2^2, [p_T])$ and $\rho(v_2^2, [p_T])$, from AMPT without SM

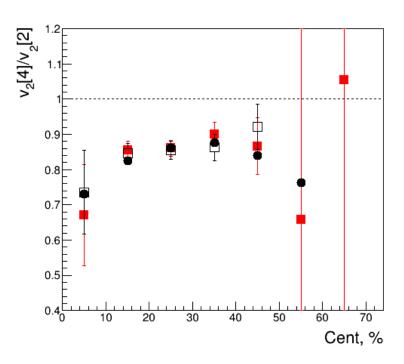

Transverse momentum-flow correlations

- ightharpoonup The $cov(v_2^2, [p_T])$ decreas with η/s
- ightharpoonup The $\rho(v_2^2, [p_T])$, show weak dependance on η/s

The transverse momentum-flow correlations dependence on beam energy in vHLLE+UrQMD model

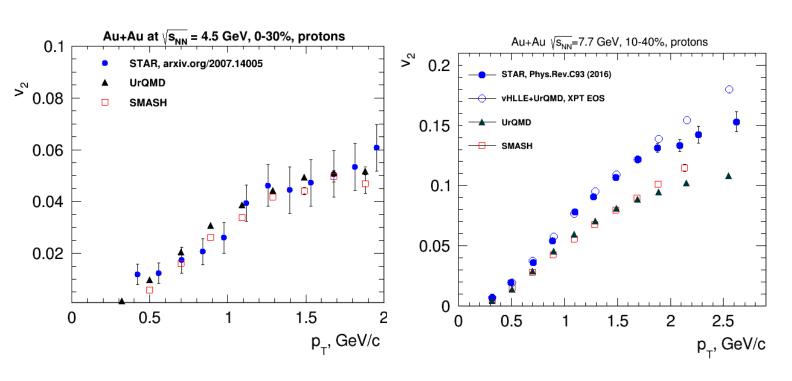


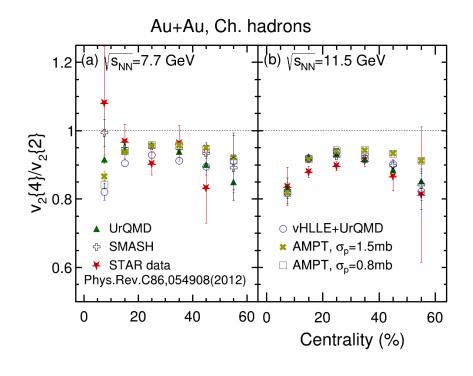

- ightharpoonup The $cov(v_2^2, [p_T])$ decreas with beam energy
- \triangleright The $\rho(v_2^2, [p_T])$, show weak dependance on beam energy


Comparison of elliptic flow measurements with published results

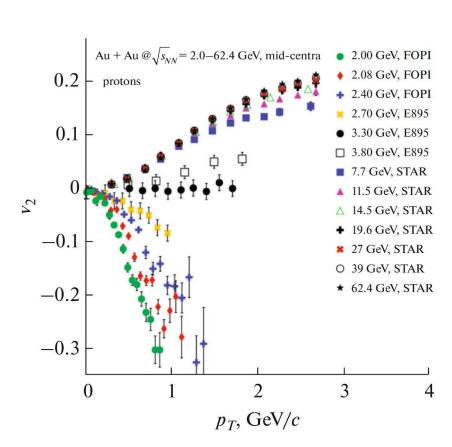
Filled red squares: multiplicity-based centrality

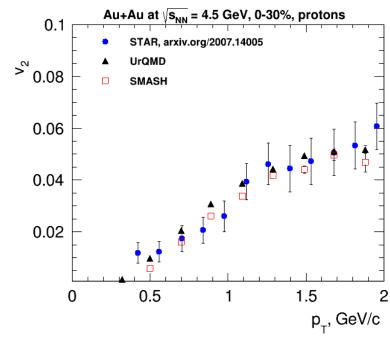
Open black squares: impact parameter (b) based centrality

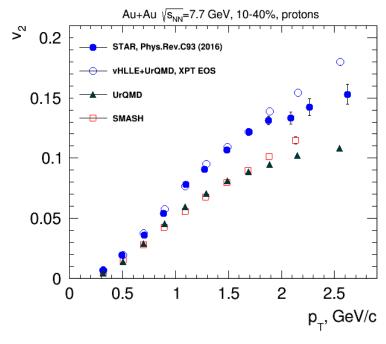




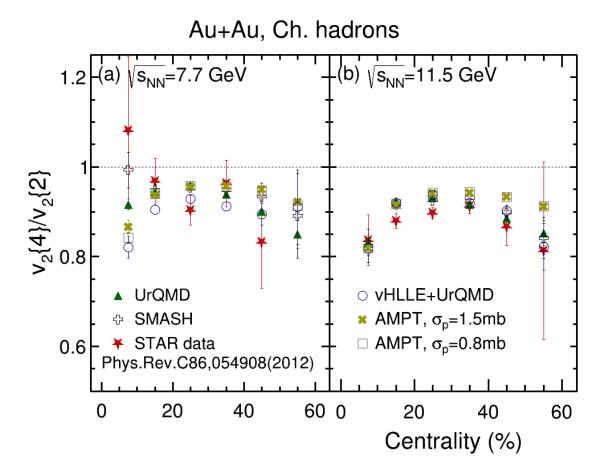
A good agreement with published data. $v_2[2]$ and $v_2[4]$ are insensitive to centrality determination method.

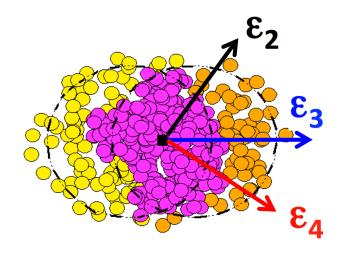

Elliptic flow at NICA energies



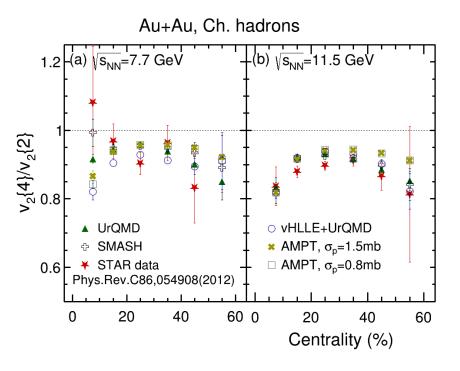

- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}} = 4.5$ GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v_2 signal compared to STAR data
 - At $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)
- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

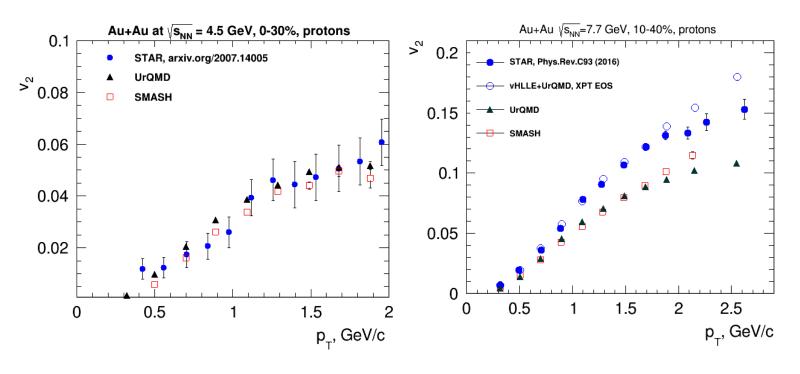
Elliptic flow at NICA energies


Taranenko et. al., Phys. Part. Nuclei **51**, 309–313 (2020)


- Strong energy dependence of v2 at $\sqrt{s_{NN}}$ = 3-11 GeV
 - v_2 ≈0 at $\sqrt{s_{NN}}$ = 3.3 GeV and negative below
- Lack of differential measurements of v₂ at NICA energies (p_T, centrality, PID,...)
- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}}$ = 4.5 GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - At $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)

Relative elliptic flow fluctuations




Small value for the $v_2{4}/v_2{2}$ ratio corresponds to large fluctuation

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT with string melting, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant
 eccentricity fluctuations in the initial geometry

Elliptic flow at NICA energies

- Relative v₂ fluctuations (v₂{4}/v₂{2}) observed by STAR experiment can be reproduced both in the string/cascade models (UrQMD, SMASH) and hybrid model (AMPT SM, vHLLE+UrQMD)
- Dominant source of v₂ fluctuations: participant eccentricity fluctuations in the initial geometry

- v₂ is sensitive to the properties of strongly interacting matter:
 - At $\sqrt{s_{NN}}$ = 4.5 GeV pure string/hadronic cascade models (UrQMD, SMASH,...) give similar v₂ signal compared to STAR data
 - At $\sqrt{s_{NN}} \ge 7.7$ GeV pure string/hadronic cascade models underestimate v_2 need hybrid models with QGP phase (vHLLE+UrQMD, AMPT with string melting,...)