

Prospects for the study of the hot QCD matter with heavy-flavor probes at ALICE-3 (HL-LHC)

M. Malaev, V. Riabov

* This work was supported by RSF according to the research project № 22-42-04405

Introduction

Advanced detector:

- Compact all-silicon tracker with highresolution vertex detector
- Superconducting magnet system
- Particle Identification over large acceptance:
- muons, electrons, hadrons, photons
- Fast read-out and online processing

- Heavy quarks, like charm and beauty, are sensitive probes to investigate the colourdeconfined medium created in high-energy heavy-ion collisions
- ✓ Because of their large mass, heavy quarks are mainly produced in the early times of the collision, before the formation of the QGP
- ✓ High p_T in-medium parton energy loss
- ✓ Comparison to light-flavor dependance of the energy loss on the color charge and quark mass
- ✓ Hadronisation mechanisms studies

ALICE3 concept: tracker

Layer	Material	Intrinsic	Barrel layers		Forward discs		
	thickness $(\%X_0)$	resolution (µm)	$\frac{\text{Length } (\pm z)}{(\text{cm})}$	Radius (r) (cm)	Position (z) (cm)	R _{in} (cm)	R _{out} (cm)
0	0.1	2.5	50	0.50	26	0.50	3
1	0.1	2.5	50	1.20	30	0.50	3
2	0.1	2.5	50	2.50	34	0.50	3
3	1	10	124	3.75	77	5	35
4	1	10	124	7	100	5	35
5	1	10	124	12	122	5	35
6	1	10	124	20	150	5	80
7	1	10	124	30	180	5	80
8	1	10	264	45	220	5	80
9	1	10	264	60	279	5	80
10	1	10	264	80	340	5	80
11	1				400	5	80

ALICE3 concept: ECAL

- The Electromagnetic Calorimeter (ECAL) is planned to cover the full central barrel region and one forward region, i.e. the rapidity range of $-1.6 < \eta < 4$
- Most of the rapidity range will be instrumented with a samplin calorimeter (ECAL)
- A fraction of the central barrel will be covered by existing PbWO₄ crystal for the high precision measurements

ECal module	Barrel sampling	Endcap sampling	Barrel high-precision
acceptance	$\Delta \varphi = 2\pi, \\ \eta < 1.5$	$\Delta \varphi = 2\pi, \\ 1.5 < \eta < 4$	$\Delta \varphi = 2\pi, \\ \eta < 0.33$
geometry	$R_{\rm in} = 1.15 {\rm m},$ $ z < 2.7 {\rm m}$	0.16 < R < 1.8 m, z = 4.35 m	$R_{\rm in} = 1.15 \mathrm{m},$ $ z < 0.64 \mathrm{m}$
technology	sampling Pb + scint.	sampling Pb + scint.	PbWO ₄ crystals
cell size	$30 \times 30 \text{ mm}^2$	$40 \times 40 \text{ mm}^2$	$22 \times 22 \text{ mm}^2$
no. of channels	30 000	6 000	20 000
energy range	0.1 < E < 100 GeV	0.1 < E < 250 GeV	$0.01 < E < 100 { m ~GeV}$

ALICE3 LOI - 2211.02491.pdf (arxiv.org)

4

ECAL energy resolution:

$$\frac{\sigma_E}{E} = \frac{a}{E} \oplus \frac{b}{\sqrt{E}} \oplus c$$

Simulation

- Pythia8 (Monash 2013 tune) pp@13TeV
- ★ $D^0 \rightarrow \pi^{\pm} + K^{\pm} + \pi^0 (\pi^0 \rightarrow \gamma + \gamma) (BR \sim 14\%)$
- ★ D(2007) → D⁰ + γ (BR ~ 38%)
- ★ D(2010)[±] → D⁰ + π^{\pm} (BR ~ 68%)

Detector resolution estimation: π^0

- 2 γ in High precision part of the calorimeter PHOS-PHOS
- ★ 2 γ in ECAL acceptance ECAL-ECAL
- 1 γ in high precision part and 1 outside ECAL-PHOS

Detector resolution estimation: D⁰

- $\clubsuit \quad D^0 \longrightarrow \pi^{\pm} + K^{\pm} + \pi^0 \left(\pi^0 \longrightarrow \gamma + \gamma \right)$
- 2 γ in High precision part of the calorimeter PHOS-PHOS
- ★ 2 γ in ECAL acceptance ECAL-ECAL
- 1 γ in high precision part and 1 outside ECAL-PHOS

Detector resolution estimation: D(2007) & D(2010)

Cut optimization: DCA & Distance between tracks cuts

DCA (distance of closest approach) cut:

- All prompt particles go from 0 (primary vertex)
- Tracks from D0 decay have non-zero DCA
- p_T dependent cut equal to DCA resolution estimation (2211.02491.pdf (arxiv.org)))

Distance cut:

- Signal distance between tracks always 0
- Background pairs distributed in wide range
- Distance $< 50 \ \mu m$

Cut optimization: Pointing angle & Decay length cuts

Decay length cut:

- Depends on the resolution of the secondary vertex reconstruction
- Does not improve signal to background ratio
- 100 μ m for check

Cuts efficiency

- ✤ First rough estimation
- No dramatic losses of signal due to cuts
- Considerable gain in signal to background due to cut implementation
- ✤ Main contribution form DCA cut
- Work in progress

Statistic estimation

Summary

- Measurement of heavy quarks will contribute to the ALICE3 physical program
- ★ $D^0 \rightarrow \pi^{\pm} + K^{\pm} + \pi^0$ advantages in relatively large BR (~14%) and electromagnetic calorimeter usage
- First estimations of detector resolution, reconstruction efficiency and cuts efficiency provided
- Principal possibility for D0 mesons reconstruction in ALICE3 experimental setup demonstrated
- High p_T reach is limited only by available statistic
- Work in progress

Backup slides

Detector resolution estimation: D(2007) & D(2010)

