Describing ϕ meson production in small collision systems with nuclear modified parton distribution functions

<u>Mitrankova M. M.</u>, Bannikov E.V., Berdnikov Ya.A., Berdnikov Ya.A., Kotov D.O., Mitrankov Iu.M., Larionova D.M.

Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, Russia

The 6th International Conference on Particle Physics and Astrophysics November 29th – December 2nd, 2022

RHIC collider and PHENIX experiment – QCD phase transition and QGP formation under extreme conditions

Lattice QCD: $\varepsilon_c \sim 1 GeV/fm^3, T_c \sim 170 MeV$

Large system collisions Au+Au, Cu+Cu, Cu+Au, U+U at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

QGP signatures are observed:

- Strangeness enhancement
- Jet quenching
- Baryon to meson ration enhancement

RHIC collider and PHENIX experiment – QCD phase transition and QGP formation under extreme conditions

Lattice QCD: $\varepsilon_c \sim 1 GeV/fm^3, T_c \sim 170 MeV$

Small system collisions $p+p, p+\text{Al}, p+\text{Au}, d+\text{Au}, a^{3}\text{He}+\text{Au}$ at $\sqrt{s_{\scriptscriptstyle NN}}=200~\text{GeV}$

CNM effects play the predominant role:

- nPDFs
- Parton interactions

ϕ meson production

 $\tau_{QGP} < \tau_{\phi}$ Small interaction cross-section with nonstrange hadrons

 $\phi~(s\bar{s})$ Measurable up to high- p_T Mass: $1,019 \pm 0.020~{\rm MeV}/c^2$ Clean probe to investigate the properties of QGP

Signatures of QGP:

Strangeness enhancement Jet quenching Comparable to the masses of the lightest baryons

OZI rule - S. Okubo, G. Zweig, J. lizuka

Collision system size

200 GeV

Theoretical baseline

NonQGP baseline:

- PYTHIA+EPPS16
- PYTHIA+nCTEQ15
- PYTHIA/Angantyr
- AMPT "default" version

QGP formation:

• AMPT "string melting" version PDF play a key role in event generators – input data for modeling[®] hard processes, parton showers, and multiple parton interactions

Distinguishing CNM effects from QGP effects Interpretation of experimental results in small and large system collisions Minimal conditions sufficient for the QGP formation from the experiment

Parton distribution functions

Considered as an underlying physics mechanism of CNM effects

$$\sigma(a+b\to X) = \int dx_a dx_b f_i(x_a, Q^2) f_j(x_b, Q^2) \hat{\sigma}_{ij}(x_a, x_b, Q^2)$$

 $f(x,Q^2)-{\rm PDF}$ – probability of a parton to have a certain fraction of the nucleon momentum x at any scale of the square of the momentum transfer Q^2 in the interaction

Deep inelastic scattering: nuclear modification -

$$R_i = \frac{f_i^A}{f_i}$$

 f_i^A – PDF in a nucleus A – nPDF f_i – PDF in a free nuclon

Parton distribution functions

nPDF sets were implemented with PYTHIA 8

EPPS16	EPPS16nlo_CT14nlo_Al27 EPPS16nlo_CT14nlo_Au197	Eur.Phys.J. C77 (2017) no.3, 163
nCTEQ15	nCTEQ15_27_13 nCTEQ15_197_79	Phys. Rev. D 93 085037

- p cteq6l
 d NNPDFv1.0
 EPPS16 and nCTEQ15 are widely used nPDFs sets in previous analyzes
- ³He nCTEQ15_3_2

[PRC105(2022)064902, PRC102(2020)014902, PRC101(2020)034910, PRC105(2022)064912]

PYTHIA parameters

Parameter	Value	Description
SoftQCD:	inelastic=on	All soft QCD processes, except for
		elastic
PDF:pSet	=8	cteq6l1 parton-distribution func-
		tion
MultipartonInteractions:	Kfactor=0.5	Multiplication factor for multipar-
		ton interaction

Nuclear modification factors

The observable used to quantitatively describe the features of particle production in x+A collisions

$$R_{xA} = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{d^2 N_{xA}/dy dp_T}{d^2 N_{pp}/dy dp_T}$$

- $d^2N_{xA}/dydp_T$ calculated with nPDFs
- $d^2N_{pp}/dydp_T$ calculated with proton PDFs
- $\langle N_{coll} \rangle = 1$ for PDF calculations

Analysis

Experimental data

Collected by PHENIX at $\sqrt{s_{\scriptscriptstyle NN}} = 200~{\rm GeV}$ at midrapidity

- $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ at midrapidit ($|\eta| < 0.35$)
 - $p{+}{\rm AI}\sim 2,0\cdot 10^9$ events, 2015
 - $p{+}{\rm Au}\sim 3,8\cdot 10^9$ events, 2015
 - $d{+}{\rm Au}\sim 1,8\cdot 10^9$ events, 2008
 - ${}^{3}\mathrm{He}\mathrm{+Au}\sim2,8\cdot10^{9}$ events, 2014

 $\phi \to K^+ K^-$

Detectors, used in the analyzes - BBC, DC-PC1, ToF-E

Results

PYTHIA+nPDFs

 ϕ meson R_{xA} calculated with PYTHIA+nPDFs and the ones, measured by PHENIX are in agreement within uncertainties

• PHENIX -

 $R_{HeAu} < R_{dAu} < R_{pAu}$

• PYTHIA+nPDFs - do not predict the R_{xA} ordering

PYTHIA/Angantyr

NNPDF is the default Angantyr nPDF set

 ϕ meson R_{xA} calculated with PYTHIA/Angantyr and the ones, measured by PHENIX are in agreement within uncertainties

- PHENIX $R_{HeAu} < R_{dAu} < R_{pAu}$
- PYTHIA/Angantyr predicts the reverse R_{xA} ordering

Other calculations

AMPT "default" vs "string melting" versions

Duke-Owens PDF set 1 [Phys. Rev. D 30, 49]

- ϕ meson production at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$
 - p+AI default version
 - $p/d/^{3}$ He+Au string melting version

Summary

- R_{xA} calculated with PYTHIA+nPDFs (EPPS16 and nCTEQ15) and the ones, measured by PHENIX are consisted with each other within uncertainties
- Model calculations do not predict the ordering, observed in the experiment: $R_{HeAu} < R_{dAu} < R_{pAu}$
- ϕ meson production in $p/d/^{3}He + Au$ collisions at $\sqrt{s_{_{NN}}} = 200$ GeV might be driven by mechanisms additional to nPDF (Possible formation of QGP droplet?)

Thank you for attention!

BackUp

System	p-value		
System	PYTHIA + nCTEQ15	PYTHIA+EPPS16	
p+Al	9.86×10^{-1}	9.95×10^{-1}	
p+Au	1.34×10^{-1}	3.88×10^{-1}	
$d{+}Au$	3.79×10^{-4}	$6.43 imes 10^{-3}$	
3 He $+$ Au	9.79×10^{-1}	9.97×10^{-1}	

System	p-value		
System	PYTHIA/Angantyr		
p+AI	$9.99 imes 10^{-1}$		
$p{+}Au$	2.66×10^{-1}		
$d{+}Au$	5.44×10^{-1}		
3 He $+$ Au	2.54×10^{-1}		

Suctor	p-value		
System	AMPT def	AMPT sm	
p+Al	7.19×10^{-1}	2.57×10^{-2}	
p+Au	3.60×10^{-4}	9.99×10^{-1}	
d + Au	2.65×10^{-6}	9.99×10^{-1}	
3 He $+$ Au	2.27×10^{-4}	8.26×10^{-1}	

BackUp

 $\langle N_{coll} \rangle$ values

	p+AI	$p{+}Au$	$d{+}Au$	3 He $+$ Au
PYTHIA	2.1	4.2	6.2	7.9
AMPT	2.1	4.4	7.2	9.8
Experiment	$2.1{\pm}0.1$	$4.7{\pm}0.3$	$7.6{\pm}0.4$	$10.4{\pm}0.7$

 $dN_{ch}/d\eta$ values

	p + AI	p + Au	$d{+}Au$	3 He $+$ Au
PYTHIA	4.2	6.7	10.8	14.3
AMPT def	3.74	6.61	10.40	13.57
AMPT sm	3.70	6.50	10.22	13.43
Experiment	$3.96{\pm}0.54$	$6.66{\pm}0.94$	$9.5{\pm}1.0$	$12.24{\pm}1.35$

BackUp

DVTIIA /A

PYTHIA/Angantyr parameters			
Parametr	Value	Description	
SoftQCD:	all=on	All soft QCD processes	
PDF:pSet	=8	cteq6l1 parton-distribution func-	
MultipartonInteractions:	Kfactor=0.5	tion Multiplication factor for multipar- ton interaction	

AMPT parameters

- Parton scattering cross section 3.0 mbn
- Nuclear shadowing