

Search for heavy sterile neutrino from D_s^+ decay

<u>Kirill Ivanov</u>¹, Yakov Andreev¹, Ruslan Chistov^{1,2}

kirill.ivanov@cern.ch, iakov.andreev@cern.ch, ruslan.chistov@cern.ch

¹ Moscow Institute of Physics and Technology (MIPT) ² National Research Nuclear University MEPhI

6th International Conference on Particle Physics and Astrophysics (ICPPA-2022) MEPhI, Moscow

The research is supported by RSF (grant № 22-22-00401)

30th November 2022

Introduction (heavy neutrinos)

- SM very successful but neutrino sector not completely accomodated (e.g. neutrino oscillations)
- Right-handed neutrinos missing in SM → added with neutrino Minimal Standard Model (vMSM)
 - sterile heavy neutrinos
 - interact only with the light active ones through mixing $\theta^2 \sim m_{\nu}/m_N$ • has **mixing angle** $V_{\ell N}$ to SM neutrino ν_{ℓ}

Matter

Antimatter

- possible solution for long-standing puzzles :
 - origin of SM neutrino masses via seesaw mechanism $m_{\nu} \sim y^2 v^2 / m_N$
 - N_1 (m~keV) = dark matter candidate
 - degenerate N₂ and N₃ (1<m<100 GeV) = possible explanation for matter-antimatter asymmetry of the Universe
 - \rightarrow can be searched for at LHC
 - HNL lifetime becomes longer with small masses or mixing

 $au \propto |V_{\ell N}|^{-2} \, m_N^{-5}$

Kirill Ivanov, ICPPA-2022

Searches of HNL in Heavy Flavour

- It is also possible to search HNL in (heavy) hadrons decays: $B^{\pm} \rightarrow l^{\pm}N, D_{(s)}^{\pm} \rightarrow l^{\pm}N, ...$
- Main idea: we have standard semi-leptonic decay to $W^- \rightarrow l\bar{\nu}_l$, then $\bar{\nu}_l$ oscillate to sterile N and then N again oscillate, but now to ν_l with the following decay to $lW^+ ->$ final state is lepton number violating (LNV)
- Such LNV decay is strictly forbidden in SM, thus we expect negligible SM background processes and great opportunity to perform searches for ${\cal N}$

Kirill Ivanov, ICPPA-2022

Our goals

• Subject of our study is search for decay $D_s^+ \to \mu^+ N \to \mu^+ \mu^+ \pi^-$ with normalisation channel $D_s^+ \to \phi \pi^+ \to \mu^+ \mu^- \pi^+$, where D_s^+ are originating from semi-leptonic B_s decay

- This analysis is to be done at CMS Experiment data, using BParking dataset (see next slides)
- Today we report our preparatory studies, divided into two parts:
 - studies of possible D_s^+ sources and normalisation channel on BParking data (we use $D_s^+ \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ mode)
 - studies of signal Monte-Carlo simulation samples

The CMS Experiment

- The CMS Experiment at the LHC was designed mainly for high- p_T physics (Higgs, top-quark, SM precision measurement, New Physics searches etc)
- However, robust muon system, good p_T resolution and perfect vertex reconstruction provide promising opportunities for heavy flavour and quarkonia-related analyses

Kirill Ivanov, ICPPA-2022

Motivation: CMS B-parking dataset

 $\frac{\mathcal{B}(B^0 \to D^{*+} \mu \nu)}{\mathcal{B}(b \to \mu X)} \frac{\alpha (B^0 \to D^{*+} \mu \nu)}{\alpha (b \to \mu X)}$

From data

2.6%

From literature:

From MC

Acceptance x efficiency

of the D*+ decay chain.

Computed on MC.

Trigger strategy

During June–Nov 2018, approximately 12 billion events were recorded with a trigger logic that requires the presence of a single, displaced muon. The sample comprises $b\overline{b}$ events with high purity. The muon candidate responsible for the positive trigger decision originates from the "tag-side" b hadron that undergoes a $b \rightarrow \mu X$ decay. The "signal-side" b hadron decays naturally as it is not biased by the trigger requirements.

Trigger: b hadron purity

$$N(b \to \mu X) = \frac{1}{F_{corr}} \alpha(D^{*+}) \times \varepsilon(D^{*+})$$

$$P_b = \frac{N(b \to \mu X)}{N(\mu)}$$

Modes of unbiased B hadron decays on tape

 $\times (\mathcal{B}(D^{*+} \to D^0(\to K\pi)\pi))$

The table indicates the number of unbiased decays of different types of B hadrons recorded to tape in 2018 (N_{2018}). The fractions of B hadron type that are produced (f_B) and their branching fraction (\mathcal{B}) are also indicated.

	Mode	N_{2018}	f_B	${\mathcal B}$	_
		Generic b hadr	ons		-
	$B^0_{ m d}$	$4.0 imes 10^9$	0.4	1.0	
	B^{\pm}	$4.0 imes 10^9$	0.4	1.0	
	$-B_{\rm s}$	$1.2 imes 10^9$	0.1	1.0	
A	b baryons	$1.2 imes 10^9$	0.1	1.0	
$B_s^0 \rightarrow D_s^+ \mu^- \bar{\nu}_{\mu}$	B_{c}	$1.0 imes 10^7$	0.001	1.0	
Source of D^+ mesons	Total	$1.0 imes 10^{10}$	1.0	1.0	

 $(B^0 \to D^{*+} \mu \nu)$

Using $\mathscr{B}(B_s^0 \to D_s^+ \mu^- \bar{\nu}_{\mu})$, we have $> 3 \times 10^7 D_s^+$ in our BParking only on probe side

....and much more on trigger side

Kirill Ivanov, ICPPA-2022

Reconstruction of two D_s^+ sources

Selection criteria are standard soft CMS B-physics cuts to provide robust reconstruction

Kirill Ivanov, ICPPA-2022

$D_s^+ \to \phi \pi^+$ fit results on data

• Robust and very large signals of D-mesons from both sources More than 1.7 and 2.2 millions of D_s^+ mesons are reconstructed

• $B_s^0 \rightarrow D_s^+ \mu^- \bar{\nu}_{\mu}$ channel with much larger purity (*S*/*B* ration in signal region) is selected as baseline for the further searches $N_{D_s^+} / \mathscr{B}(D_s^+ \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+) \approx 8 \cdot 10^7$ of D_s^+ mesons from B_s^0 which could be used for $D_s^+ \rightarrow N \mu^+ \rightarrow \pi^- \mu^+ \mu^+$ searches

Studies of $D_s^+ \to \pi^+ \pi^- \pi^+$

• Signal of $B_s^0 \to D_s^+ \mu^- \bar{\nu}_\mu$ with $D_s^+ \to \pi^+ \pi^- \pi^+$ is also accessible via CMS BParking dataset

- While $D_s^+ \to \phi \pi^+$ is considered to be the normalisation channel, $D_s^+ \to \pi^+ \pi^- \pi^+$ mode could be important background contribution (with $\mu^\pm - \pi^\pm$ misID)
- Very rich resonant structure in $M(\pi, \pi)$ invariant masses is present

Kirill Ivanov, ICPPA-2022

MC simulation intro

- Using official CMS MC production, we have generated 4 points in $(m_N, |V_{\mu N}|^2)$ plane for possible HNL parameters
- For theoretical calculation of HNL parameters and their relations (*N* lifetime $\tau \sim m_N^{-5} |V_{\mu N}|^{-2}$) we used approach from Phys.Rev.D 94 (2016) 11, 113007: $\Gamma_N \approx \frac{G_F^2 m_N^5}{96\pi^3} |V_{\mu N}|^2 \cdot 10.95 \longrightarrow |V_{\mu N}|^2 = \frac{0.41}{m_N^5 [\text{GeV}] \cdot c\tau[\text{mm}]}$

Kirill Ivanov, ICPPA-2022

Gen-filter efficiency e^{gen}

	m_N = 1.0 GeV	m_N = 1.5 GeV
ctau = 1cm	1,52 ± 0,03 %	1,45 ± 0,03 %
ctau = 10 cm	1,50 ± 0,03 %	1,49 ± 0,03 %

Efficiency is in $[10^{-2}]$ units

- *ε^{gen}* is an efficiency of soft requirements applied at the generator level on the *p_T* and *η* of the particles (gen-filters).

 For our MC samples, GEN-filter includes:
- 1) "BParking trigger" filter: at least one muon has $p_T > 6.8$ GeV and $|\eta| < 1.55$
- 2) Filter, related with CMS detector acceptance on p_T and η (restrictions on possibilities of adequate particles reconstructions) for HNL daughters: $p_T(\mu) > 0.5 \text{ GeV}, |\eta(\mu)| < 2.5$ $p_T(\pi) > 0.5 \text{ GeV}, |\eta(\pi)| < 2.5$
- In result we have $\epsilon^{gen} \sim 1.5~\%$, similar for all samples

Reconstruction and selection criteria

Selection criteria are standard soft CMS B-physics cuts to provide robust reconstruction MC Truth (matching the reconstructed particles with the generated ones) is applied.

Pion selection

- $|\eta(\pi^{\pm})| < 2.4$
- $p_T(\pi^{\pm}) > 0.5 \; GeV/c$

• One has $p_T(\mu^{\pm}) > 7 \ GeV/c$ and

 $\overline{
u}_{\mu}$

р

Muon selection

• $p_T(\mu^{\pm}) > 3 \ GeV/c$

 $d_{xy}/\sigma_{d_{yy}}(\mu^{\pm}) > 3$

BParking trigger

• $|\eta(\mu^{\pm})| < 2.4$

- $\frac{D_s^+ \text{ selection}}{|m_{D_s^+} m_{D_s^+}^{PDG}| < 60 MeV}$
- $D^+_{s vtxprob} > 0.01$
- $p_T(D_s^+) > 8 \ GeV/c$
- $(B_s^0, D_s^+)_{detach \ significance} > 3$

N

μ

 π^{-}

Charge-conjugate states are implied

N selection

- $N_{vtxprob} > 0.01$
- $(D_s^+, N)_{detach \ significance} > 1$
- $\frac{B_s^0 \text{ selection}}{(B_s^0)_{vtxprob}} > 0.01$
- $(B_s^0)_{detach \ significance} > 3$
- $p_T(B_s^0) > 12 \ GeV/c$
- $\cos(PV, B^0) > 0.9$

```
Kirill Ivanov, ICPPA-2022
```

p

PV

Kinematic distributions: p_T of muons and N

Kirill Ivanov, ICPPA-2022

Example of fits for one MC sample

- Clear peaks are visible in reconstructed invariant masses of μ⁺π⁻ and μ⁺μ⁺π⁻ (corresponding to N and D⁺_s signals) Numbers of signal events and detector resolutions are extracted from fits with Double Gaussian (or Gaussian + Crystal Ball) for signal and 1st order polynomial for background
- HNL detector resolution is (as expected) better for lower mass, no clear dependence from lifetime is observed
- D_s^+ resolution was found to be independent from HNL parameters and is about 17-18 MeV for all samples

HNL detector resolution (in MeV)

	m_N = 1.0 GeV	m_N = 1.5 GeV
ctau = 1cm	10.4 ± 0.6	16.1 ± 0.7
ctau = 10 cm	11.0 ± 0.3	14.9 ± 1.1

Reconstruction and total efficiency

Reconstruction efficiency $e^{rec-sel}$

Total efficiency ϵ

	m_N = 1.0 GeV	m_N = 1.5 GeV	
ctau = 1cm	9,03 ± 0,10	6,64 ± 0,18	
ctau = 10 cm	$8,00 \pm 0,04$	5,26 ± 0,06	

	m_N = 1.0 GeV	m_N = 1.5 GeV
ctau = 1cm	13.72 ± 0,31	9,63 ± 0,32
ctau = 10 cm	$12,00 \pm 0,25$	$7,84 \pm 0,18$
		[10 ⁻⁵]

$[10^{-3}]$ units

• $e^{rec-sel}$ is an efficiency of the reconstruction and selection requirements applied;

calculated as ratio of the number of events from fit of $N \to \mu^+ \pi^-$ after all cuts to the number of generated events in MC-sample;

 $e^{rec-sel}$ seems to be better for both lower mass and lifetime

- Total efficiency is $\epsilon = \epsilon^{gen} \times \epsilon^{rec-sel}$ The results are about $10^{-4} \div 10^{-5}$ depending on HNL parameters
- The expected number of signal on data could be estimated as $N_{sio} = N(D_s^+) \times (\mathscr{B}(D_s^+ \to N[\to \mu^+ \pi^-]\mu^+) \times \epsilon$
- With $N(D_s^+) \sim 10^8$ (experimental estimate from BParking studies) and $\epsilon \sim 10^{-4}$, we need relatively high branching ($\gtrsim 10^{-3}$) to get any reasonable $N_{sig} \longrightarrow$ our final upper limit could be measured to be quite humble and unpretentious

Conclusion and summary

- We report the studies of possibilities and prospects for the search for heavy sterile neutrino from D_s^+ decay
- Significant and robust signal with enormous D_s^+ statistics is observed on CMS 2018 data (BParking dataset)
- Monte-Carlo studies of signal decay $B_s^0 \rightarrow D_s^+ \mu^- \overline{\nu_{\mu}},$ $D_s^+ \rightarrow N \mu^+ \rightarrow \mu^+ \mu^+ \pi^-$ are provided

- Generator and reconstruction efficiencies are estimated for 4 points in $(m_N, |V_{\mu N}|^2)$ plane for possible HNL parameters
- Normalisation and background channels are to be studied in Monte-Carlo simulation
- As our next plans we consider to perform selection optimisation (using both data and MC) and then proceed blind analysis for the search of $D_s^+ \rightarrow N\mu^+ \rightarrow \mu^+\mu^+\pi^-$ and measuring its branching fraction w.r.t. $D_s^+ \rightarrow \phi \pi^+$ (or its upper limit)

Thank you for your attention!

Do you have any questions?

Kirill Ivanov, ICPPA-2022

Backup slides

Kirill Ivanov, ICPPA-2022

Heavy neutrinos

• HNL lifetime becomes longer with small masses or mixing

 $\tau \propto |V_{\ell N}|^{-2} m_N^{-5}$

- Lifetime :
 - very small \rightarrow prompt decays
 - macroscopic distances from production vertex
 - \rightarrow displaced decays for lower couplings at low masses
- Existing constraints (filled area) and future projections (contours) on mixing angle and mass:
- N are sterile and interact only with ν through mixing

 M_N (GeV)

1

10

Kirill Ivanov, ICPPA-2022

Gen-lvl $L_{xy}(N)$ -distributions

Kirill Ivanov, ICPPA-2022

- Important parameter of our studies is acceptance, which is Numerator
 Acceptance = Denominator
- Denominator is number of gen-events after "BParking trigger" filter: at least a muon with $p_T > 7$ GeV and $|\eta| < 1.55$
- Numerator is "BParking trigger" filter plus "CMS acceptance requirements" for HNL daughters: $p_T(\mu) > 3 \text{ GeV}, \quad |\eta(\mu)| < 2.5$ $p_T(\pi) > 0.3 \text{ GeV}, \quad |\eta(\pi)| < 2.5$

Acceptance estimations

- Denominator is number of gen-events after "BParking trigger" filter: at least a muon with $p_T > 7$ GeV and $|\eta| < 1.55$
- Numerator is "BParking trigger" filter plus "CMS acceptance requirements" for HNL daughters: $p_T(\mu) > 3 \text{ GeV}, \quad |\eta(\mu)| < 2.5, p_T(\pi) > 0.3 \text{ GeV}, \quad |\eta(\pi)| < 2.5$
- The higher mass gives us higher acceptance No significant dependence of acceptance from coupling parameter $|V_{\mu N}|^2$ is observed

Kirill Ivanov, ICPPA-2022

